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I. INTRODUCTION 

Cloud physics experiments originally planned for the zero-gravity 

Atmospheric Cloud Physics Laboratory (ACPL) aboard the 'Space Shuttle 

stipulated a need for cloud condensation nuclei (CCN) of specified 

properties. The aim of the present investigation was to scrutinize 

methods of particle generation and characterization with regard to their 

applicability to the ACPL program. Subsequent to the initiation of this 

program in December, 1976, the concept of an ACPL as a flight facility 

was abandoned by NASA; however, the objective of this study remained 

unchanged since the results would still be applicable to future low-g 

flights. 

While the absence of gravity unavoidably introduces constraints in 

some-techniques of aerosol generation, at least as many difficulties in 

the tasks of the present project can be traced to the stringent 

specifications regarding the output of particle generators. The need to 

achieve particularly high degrees of aerosol monodispersity, output 

constancy, reproducibility, etc., previously not common in cloud physics 

experimentation stems from the fact that the ACPL experiments were 

specifically intended to be of great sensitivity in order to clearly 

detect the effects unmasked by the low gravity environment. 

At the outset of this study, most of the tasks outlined in the 

proposal were assigned similar levels of effort; however, as work pro- 

gressed, it became evident that priorities had to be established,leading 

to a very inhomogeneous distribution of efforts. There were two reasons 

for this development. First, pneumatic atomization of solutions, the 
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particle generation method favored on the basis of literature studies 

(Anderson, 1977; Liu and Lee, 1975) was found to pose unexpected output 

stability problems, and,secondly, numerous discussions between cognizant 

NASA and DRI personnel indicated that on initial flights of the ACPL, 

especially on the very first one, there would be less elaborate experi- 

ments with simpler hardware and fewer accessories than originally plan- 

ned. Thus it was possible and advisable to concentrate more on the 

problems of the prime particle generator at the expense of less urgently 

needed equipment. 

These deviations from the original work plan will not be discussed 

any further in this report since the DRI’s course of action was 

communicated through monthly progress reports to and implicitly approved 

by NASA. 

Since the aerosol characterization is a prerequisite to assessing 

performance of particle generation equipment, redundancy is avoided by 

devoting the following section of this report to the evaluation of 

techniques for characterizing aerosol particles. 

The third section contains the discussion of aerosol generation 

whereby the studies of atomizer and photolytic generators represent the 

major portion, including subsections on preparation of hydrosols (used 

with atomizers), and onthe evaluation of the flight version of the GE 

atomizer. 
. 

No separate sections were established for the discussion of the 

joint workshops with the University of Wyoming and of the problem of 

gaseous contamination of aerosol -particles. Pertinent information on 

these topics is presented in the proper context in various other 

subsections. 
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Conclusions and recommendations are summarized in the fourth and 

.final section. 

. 
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II. AEROSOL CHARACTERIZATION 

A. REQUIREMENTS 

Ideally, aerosol generators to be used in low-g should perform in 

such a reproducible fashion that subsequent measurements of particle 

size spectra would not be necessary; however, as will be seen in Section 

III, the reliability of particle generators is not good enough to 

guarantee a flawless performance as shown by terrestrial calibration 

over a period of a flight duration. Thus, in order to ensure accurate 

kpowledge of the characteristics of the aerosol used in each experiment, 

it is necessary to obtain in-flight measurements of the particles 

generated. 

Due to the use of high purity substances from which to generate 

particles, the chemical composition of the resulting aerosols is essen- 

tially known (except for difficult to detect surface contamination as 

discussed later). Therefore, aerosol characterization does not require 

a chemical investigation, but can be limited to the determination of 

size distribution and number concentration. 

Two types of aerosol assessment have to be considered - real time 

and "hard copy." While a real time characterization is essential, 

allowing the investigator to take corrective steps if necessary, a "hard 

copy" (an actual representative collection of particles) is equally 

important because it permits detailed scrutiny with instrumentation not 

available in flight (such as electron microscopes) which, in many cases, 

provide a nearly-absolute determination of particle size and number. 
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B. REAL TIME METHODS FOR AEROSOL GENERATION 

The most relevant factor in the selection of a suitable method for 

onboard aerosol characterization is the particle size range. Since the 

upper size limit of the primary range was specified as 100 nm, optical 

particle counters/classifiers such as the familiar Royce 225 were ruled 

out for this task. Although optical counters can, in principle, 

contribute to the particle assessment if combined with a condensation 

device that increases the particle size into the optical range, this 

process involves the condensational behavior of the particles themselves 

and thus, the procedure cannot be used for an independent characteriza- 

tion of the aerosols in question. 

Two well-researched, size-dependent properties of aerosol parti- 

cles that lend themselves to middle and lower submicron range measure- 

ment are electrical mobility and diffusivity. The last decade has 

brought profound advances in the design and application of particle 

measuring devices based on electrical mobility assessment. Two such 

instruments have been used extensively in this investigation and will be 

discussed below. Based on classical diffusion theory, "diffusion batter- 

ies" consisting of considerable lengths of tubing were used initially to 

determine aerosol size distributions. A modern, compact version origin- 

ally scheduled to be part of the ACPL, and used a number of times on the 

present project, was also evaluated. 

1. Electrical Mobility Instruments 

Recent literature treats most aspects of theory and design of this 

type of particle analyzer (Knutson and Whitby, 1975a, b; Knutson, 1975; 

Hoppel, 1978; Liu and Pui, 1974, to name a few). 



For the purpose of the present investigation, only a brief des- 

cription of the underlying principles of operation and a discussion of 

problems pertaining to the ACPL application will be presented. 

The two instruments used in this study are the Electrical Aerosol 

Analyzer (EAA) by TSI (Model 30301,and the Electrostatic Classifier 

(EC), also by TSI (Model 3071). In both instruments, the aerosol is 

first electrically charged (differently for EC and EAA) and subsequently 

passed through the electric field of a cylindrical high voltage conden- 

ser where discrimination takes place according to charge vs. size 

relationships; the third element in this sizing method is a device that 

counts the particles of the selected size fractions. 

a. Electrostatic Classifier 

(1) General Principle 

The essential features of this instrument are depicted in Figure 

2-l. The central part of the device is the cylindrical analyzer section 

in which a uniform clean air sheath flow (qsh) is maintained while the 

aerosol is injected at a much slower rate (9,) through a peripher- 

ally-located annular slot. For a given voltage applied between cylinder 

wall and axial collector rod, particles of a certain mobility 

Z 
w 

= neC(Dp)/3nnD 
P 

(where n number of elementary charges, e; C the Cunningham slip correc- 

tion; T-I the viscosity of air; and D 
P 

the particle diameter) reach the 

axially located opening where a flow equal to the aerosol inlet flow is 

withdrawn ("monodisperse aerosol outlet"). All particles with higher 

mobility end up on the central rod while the ones with lower mobility 

and the neutral particles are trapped in the filter at the exit end of 

the cylinder. 
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Figure 2-l. Schematic of air flow in TSI, Model 3071, Electrostatic 
Classifier (EC) [from Instrument Manual]. . 
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Figure 2-2 depicts the relationship between electrical particle 

mobility and the size of singly, doubly, and triply charged particles; 

it also shows the voltage that needs to be applied to the condenser to 

obtain singly charged particles of diameter D 
P 

in the outlet under the 

stated flow conditions and the particular geometry of this device. 

Knutson and Whitby (1975a) have shown that mobility Z 
P' 

the voltage V, 

and the sheath flow q,h follows the relationship Z 
P 

= G q,,,/v, where 

the factor G incorporates dimensions of the condenser. 

From the above expression for the mobility and Figure 2-2, it is 

quite clear that the knowledge of the distribution of charges on the 

particles is a determining factor for the usefulness of the device. For 

the primary particle size range under consideration here, the method of 

charge neutralization provides a convenient means of establishing a 

relatively well-known charge distribution, the Boltzmann charge equil- 

ibrium, achieved by letting the particles interact for a sufficient time 

with highly concentrated bi-polar ions. The latter have been generated 

in this study by radioactive Kr 85 in the TSI charge neutralizer (Model 

3077 and/or 3012) through which the aerosol was passed prior to entering 

the analyzer section of the EC. 

Figure 2-3 illustrates what charge distributions can be expected 

after passage through the charge neutralizer; shown are the fractions of 

singly, doubly, and triply charged particles (of either sign) as a 

function of particle size based on values tabulated by Pui and Liu 

(1979). It is immediately evident that, in the size range of interest, 

the singly charged particles become increasingly dominant over multiply 

charged ones with decreasing size. This fact, which translates into pre- 
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dominant passage of one size of particles for a given set of voltage and 

flow rates, makes the EC also a primary tool for generating monodisperse 

aerosols in the lo-100 nm range (more about this aspect in Section 

III.D.3). Figure 2-3 also indicates that, with decreasing diameter, the 

fraction of singly charged particles becomes very small which, in 

effect, reduces the sensitivity for particle number measurement. 

The essential function (in size distribution measurement) of count- 

ing the particles in the selected size fraction is not incorporated into 

the EC, but has to be performed by an external instrument connected to 

the "monodisperse aerosol" outlet of the EC. In this study, the TSI 

Electrical Aerosol Detector (EAD), Model 3070, was used most of the. 

time. The device uses an electrometer to measure the current produced 

by the charges of the passing particles - requiring, once more, know- 

ledge of the charge distribution. 

In principle, any "total particle counter" could provide the 

necessary information; even instruments based on size enhancement 

through condensation are suitable since, at this stage, no size dis- 

crimination is needed. However, peculiarities of the various available 

counters (to be discussed later) made the EAD the preferred instrument. 

(2) Specific Problems 

(a) Uncertainties in Equilibrium 
Charge Distribution 

While knowledge of the equilibrium charge distribution is con- 

sidered sufficient for most practical applications, uncertainties exist 

which become more pronounced with decreasing particle size. In the 

course of establishing the droplet size distribution of some nebulizers 

by measuring the size distribution of the dry residue particles, it was 
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noticed that, when nebulizing salt solutions of different concentra- 

tions, a distinct deviation from the expected overlap of size distri- 

bution curves occurred for particle sizes below about 15 nm if the 

values for the singly charged fraction of the solid curve of Fig. 2-3 

were applied. Based on these discrepancies, the dashed line in Figure 

2-3 was tentatively established by empirical means and used in subse- 

quent work with satisfactory results. However, the real depth and 

difficulty of the problem can be seen from Fig. 2-4, taken from the 

Knutson (1975) paper which should be consulted for further details. It 

appears that the user of the EC will have to look out for future 

development in this matter in order to achieve the most valid interpre- 

tation of EC data. 

(b) Establishing Charge Equilibrium 

According to manufacturer's specifications, the charge neutralizer 

(TSI Model 3077) built into the EC should,suffice to provide Boltzmann 

equilibrium for aerosol flow rates up to the maximum recommended for the 

EC (6 a min-'). With the intent to confirm this information, experi- 

ments were performed by passing a nominally monodisperse latex aerosol 

through the EC with and without an additional charge neutralizer (TSI 

Model 3012). An example of this comparison is shown in Figure 2-5, 

where the EC output is plotted in terms of charge counts (by EAD) versus 

the EC voltage; as expected, the latex aerosol consisted of singlets, 

doublets and higher multiplets with singly, doubly, etc. charged frac- 

tions in each category. These show up as the peaks in Figure 2-5 and 

can be identified with the aid of Figs. 2-2 and 2-3. 
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function of diameter according to indicated authors (from 
Knutson, 1975). 
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Of principle interest here are the relative peak heights of the 

singly and doubly charged singlets. Despite the difficult-to-assess 

interference of doubly charged multiplets (e.g., doubly charged doublets 

have approximately the same mobility as the singly charged singlets - 

thus the two are superimposed on the main peak) the measurements show 

that the addition of a second charge neutralizer causes the ratio of 

doubly over singly charged particles to drop by about 50%. Since no 

further significant change was observed when the additional 2 mCi 

neutralizer was replaced with a more powerful 10 mCi unit (TSI Model 

3054) it is assumed that the added 2 mCi ionizer does provide the 

equilibrium charge distribution. All subsequent EC work was carried out 

with an added neutralizer. 

(c) Sensitivity and Resolution 

It is important to determine whether and how these two essential 

quantities can meet the requirements given by the ACPL task. Since the 

principle of operation of the EC is to cut out of the total input 

spectrum a narrow segment (ADPI, the particles of which are then count- 

ed, it is obvious that the better the size resolution (i.e., the smaller 

ADp) the worse the number sensitivity becomes (though somewhat dependent 

on the type of particle counter). 

0 Size Resolution 

As shown by Knutson and Whitby (lg75a,b) in their rigorous 'math- 

ematical treatment of the EC, the shape of the narrow ("monodisperse") 

size distribution extracted by the instrument from a primary aerosol 

with a flat size distribution is triangular if aerosol input and output 
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flow rates are equal, and provided the particle number is plotted 

against a logarithmic EC voltage scale (rather than Dp). Thereby the 

base width of the triangle represents a suitable measure of the size 

resolution which can be expressed by D,/D2, the particle diameters 

associated with V,, VP, the end points of the triangle base. Since the 

particle mobility Z 
P 

is approximately proportional to p 
v 

-2 (see Fig. 

2-2) in our range of interest, 

and, following Knutson and Whitby (1975) 

z2= qsh t qa 

zl qsh - qa 

Thus, for typical values of qsh = 20 R min and q, = 2 f min -1 or 6 R 

min -' (maximum recommended for preservation of laminar flow), the volt- 

age ratios V1/V2 become 1.22 and 1.86, respectively, which translates 

for D1/D2 to approximately 1.10 and 1.36, respectively. These values 

are not only important in the context of size resolution but even more 

so for determining absolute number densities in the input aerosol since 

one usually plots AN/A log Dp vs. D 
P 

. 

Experimental verification of these theoretical values for the EC's 

resolution can, in principle, be obtained by passing a perfectly monodis- 

perse aerosol through the device while varying the voltage. The result- 

ing number vs. voltage relationship then provides an exact duplicate of 

the aforementioned triangular size distribution passed by the EC at the 
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fixed voltage corresponding to the size of the, monodisperse aerosol. 

While truly monodisperse aerosols in the desired size range are general- 

ly unavailable, commerical latex spheres with known standard deviation 

(SD, 0) were. used as documented in Fig. 2-5. The bars at the base of 

the main peak indicate 20 as the measure for the width of the size' 

distributions inv,olved: 2uL. latex particles; 2oEC, the SD for theoreti- 

cal response of the EC to a perfectly monodisperse input (above mention- 

ed triangle); 2a exp.' represents the experimentally obtained peak; and 

2uth signifies the theoretically expected EC response to the actual 

latex distribution, calculated according to (log oth12 = (log oL12 ' 

-I- (log OEc)i. 

As a second EC became briefly available late in this program, the 

soluble salt output of one EC was used as "monodisperse" test aerosol 

and passed through the second EC. This provided a two-fold improvement 

for performance verification tests: (1) no interference from multiply- 

charged multiplets, and (2) a narrower size distribution that has 

inherently the same shape as the instrument's response to a truly 

monodisperse aerosol. The theoretically expected particle number count 

vs EC voltage is illustrated in Fig. 2-6 as the bell-shaped curve,* 

while the triangle represents the input size distribution centered (in 

this example) at about 58 nm. Results of an actual measurement are 

shown in Fig. 2-7 (an excerpt from Fig. 3-70); the dashed triangle, 

representing the most likely input distribution, was obtained from the 

*Note that this should not be confused with the size distribution of the 
aerosol that emerges from the second EC at a given voltage setting. 
More on this in Chapter III. 

17 



10 
EC VOLTAGE -V 

I I I I I I I I 
52 54 56 56 60 62 64’ 66 

PARTICLE DIAMETER -nm 

Figure 2-6. Theoretical response of EC (bell-shaped curve) to triangu- 
lar shaped input size distribution (which represents theo- 
retical output of another EC with an input having a flat 
size distribution). 
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measured curve according to the relationships developed for Fig. 2-6, 

while the solid triangle corresponds to the theoretically expected 

output size distribution of the first EC based on the flow rate ratio. 

Data from both Fig. 2-5 and 2-7 are in agreement showing that the actual 

peak widths obtained with the EC are about 20% larger than predicted. 

Thus, the experimentally determined geometric standard deviation 0 
!P 

of 

the triangular distributions (in terms of particle size), an appropriate 

measure for the size resolution of the EC, is below 1.03 for a 2 R min -1 

aerosol flow rate. Translated into terms of supersaturation for the 

case of soluble CCN (according to the Kohler relationship) we obtain 

agSS 2 1.04. This value indicates that the EC's size resolution is 

more than adequate for proper characterization of test aerosols in ACPL 

applications. 

In the above discussion, it was tacitly assumed that the number 

density of singly charged particles was size independent; however, this 

is generally not the case because: (1) the singly charged fraction of 

particles varies with size as shown in Fig. 2-3, and (2) the number size 

distribution of the input aerosol usually has a distinct peak. Therefore 

curves of the type shown in Fig. 2-6 may become somewhat distorted; 

however, it appears that the previous considerations regarding the EC's 

size resolution remain essentially valid. 

@ Absolute Size Calibration 

For satisfactory aerosol characterization in the context of ACPL 

experimentation, absolute size information is as important as size 

resolution. Obviously, the accurate size selection in the EC depends as 

much on the rigorous control of air density and velocity in the 
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jnstrument as it does on the precise voltage control. While the latter 

did not appear to be a problem, maintenance and measurement of the exact 

aerodynamic conditions inside the EC required particular care and atten- 

tion. 

The calculated calibration curve 

shown in Fig. 2-2 correlates voltage 

furnished by the manufacturer and 

and particle size for "standard 

flow rates", 20 a min -1 sheath flow and up to 6 Q min -1 of aerosol 

flow. These conditions were applied throughout our tests; however, at 

times it was difficult to maintain all flows as steadily as desired, and 

t5% deviations were not unusual, Therefore, the effects of flow on - 

sizing were determined experimentally by inputting fixed size aerosols 

and performing voltage scans at various flows. Fig. 2-8 illustrates the 

effect of variations in aerosol flow (using the fixed output of another 

EC); as discussed previously, the width of the resulting peaks increases. 

predictably with increasing flow, but there is also a noticeable shift 

towards higher voltages with increasing flow, corresponding to a 1 to 2 

nm increase in particle diameter. Considering that (in this example) 

the flow was more than doubled, no significant size shifts due to small 

inadvertent aerosol flow changes have to be expected. However, since 

the number concentration of the passing aerosol fraction is approximate- 

ly proportional to the aerosol flow, changes in the latter could 

noticeably distort a measured size distribution. 

Figs. 2-9 and 2-10 show how the voltage associated with the peak 

of a latex aerosol shifts as the sheath and/or excess flows through the 

EC are varied. The relative changes in apparent particle size and flow 

rate are about equal and, therefore, the effect of changing sheath flow 

cannot be ignored. . 
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In order to avoid the problems associated with flow inaccuracies 

and variabilities, the thermal flow meters of the EC were frequently 

recalibrated and, if necessary, their output recorded over the duration 

of particularly sensitive experiments. Since the EC's flow meters 

measure mass flow, it is important to perform calibrations at the pres- 

sure regime used during experimentation. 

A further reason for monitoring air pressure in the EC is the 

pressure dependence of the mean free path of the gas molecules which 

determines the Cunningham slip correction to which the mobility of the . 

particles is directly proportional. While the curves in Fig. 2-2 are 

based on standard pressure, calculations show. that, for DRI’s altitude 

of 1500 m, particles would, for instance, measure 54 nm instead of 50 nm 

for a voltage of 950 V, or 106 nm instead of 100 nm at 3400 V. This 

correction did bring most of the latex sphere test results very close to 

the calibration curve. However, for very accurate experiments, it will 

be advantageous to take into account whether the EC is run in an 

overpressure or underpressure mode. 

Since even "monodisperse" diagnostic latex aerosols are not always 

of the stated size, precision work requires true size calibration of the 

EC with monodisperse aerosols (preferably generated with another EC) 

which are suitable for transmission electron micrography without suscep- 

tibility for size changes in vacuum and electron beam. 

0 Number Sensitivity 

As pointed out earlier, the -excellent size resolution of the EC 

leads to a relatively small number output of the instrument, which is 

further reduced due to the small fraction of singly charged particles 
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available for the classification process, diminishing especially rapidly 

with decreasing size below about 50 nm. The effects of this problem are 

illustrated in Fig. 2-11 which relates particle size to the minimum 
* 

aerosol concentration required in the EC input to provide sufficient 

particle numbers in the output for counting with either the EAD or the 

TSI-CNC at 2 or 6 Q min-' aerosol flow rates. Low flow rate not only 

narrows. the size interval (thereby reducing the output particle concen- 

tration) but, in the case of the EAD, also diminishes the particle 

(i.e., charge) flow rate, thus compounding the effect of low flow rate. 

If a TSI-CNC** could be used to monitor the EC output, the sensitivity 

could be increased considerably; the curves in Fig. 2-11 pertaining to 

the CNC were calculated on the basis of a required concentration of 10 

cm although the TSI-CNC per se could be used at one to two orders of 

magnitude lower concentration, but counting statistics might be unsatis- 

factory. Below 20 nm particle diameter this instrument's sensitivity 

drops rapidly, thus the curves were not extended below that limit. 

0 Multiole Charae Comoensation 

While uncertainties in the exact value of the fraction f, of 

singly charged particles (see Figs. 2-3 and 2-4) of sizes below about 30 

nm may lead to questionable values in that low size range for size 

distributions obtained with the EC, above the size of 30 nm interference 

from multiply charged particles has to be taken into account; however, 

* 
Note that the values of the ordinate are normalized to a diameter 

interval of a decade. 
** 

The TSI-CNC Model 3020 was put on the market too late to be used on 
this program. For zero-g applications, a substantial modification would 
be required. 
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this is not a problem of physics, but rather one of computational. 

expediency. 

As Fig. 2-2 indicates, at a given voltage setting, the EC passes 

particles possessing the corresponding mobility. This population is 

comprised of particles with single charges and diameter D,, with two 

charges and D2, with triple charge and D3, etc. whereby approximately D2 

2 J2 - D, and D3 2 J3 - D,. Again, these are narrow triangular size 

distributions centered at D,, D2, D3 (the doubly charged particles of 

Figs. 25 and 2-7 are of the same size as the singly charged ones and 

thus distinguishable from them). denotes the true particle 
. If Ni 

concentration at Di, fiD the fraction of particles with i charges at 
i 

Di 3 and Nil represents the measured particle concentration at the 
* 

voltage corresponding to D,, then N,' = N,f, D + N2f2 D + . . . 
1 2 

The question is what to substitute for N2, N3 in order to obtain 
c 

N1' Depending on the size range and the shape of the size distribution 

different approaches can be taken. For instance, in the size range of 

interest to ACPL triply charged particles might be neglected, and one 

could follow procedures by Liu and Pui (1974) or the improved method of 

Cooper and Langer (1978). However, since highest accuracy is desired 

and programmable computing facilities were to have been on hand in the 

ACPL it is recommended that the more elaborate iterative procedure by 

Hoppel (1978) be applied. However, regardless of which of the compu- 

tational schemes one selects, if a significant portion of the investi- 

gated size distribution is located beyond the upper size limit of the 

* 
If measurements are made with the EAD which senses charges, not parti- 

cles, the equation has to be modified accordingly (Nk + iNi). 
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EC, N,, if near, but below that, limit cannot be calculated since N2', 

N3' for DE, D3 are not available to approximate. N2, N3. For the 

originally intended ACPL application, most size spectra of interest 

would have existed within the EC's range (which, if necessary, could 

have been extended upwards to some extent by reducing the flow rates). 

b. Electrical Aerosol Analyzer 

(1) Principle of Operation 

The Electrical Aerosol Analyzer (EAA), another TSI product, Model 

3030, uses essentially the same cylindrical high voltage condenser as 

the EC to size discriminate by electrical mobility; however, it differs 

from the EC in two important aspects: 

e Aerosol particles are exposed to unipolar ions produced in a 

corona discharge. This leads to a higher charge level and associated 

increased number sensitivity,. especially for the larger particles (100 

to 1000 nm); but no charge equilibrium is achieved, and, therefore, the 

time of exposure to the charging region (and thus the flow rate) has to 

be controlled very carefully. 

e A built-in electrometer measures the number of those parti- 

cles (i.e., their charges) which are not deposited at the center 

electrode. Thus, a voltage scan produces a cumulative mobility spectrum 

from which a differential size spectrum is derived in the evaluation 

process. These features and associated air flows are shown schemati- 

cally in Fig. 2-12. It is important to note that a charger sheath flow 

keeps the aerosol at a distance from the ion source in order to prevent 

formation of a wide charge distribution for a given particle size. 
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Detailed descriptions of the apparatus are given by the designers (Liu, 

et al., 1974; Liu and Pui, 1975). 

(2). Special Problems 

In the process of evaluating the EAA a number of comparisons with 

the EC provided the following information. With respect to the minimum 

.particle concentration needed to obtain a signal, Fig. 2-11 shows that 

the EAA has some advantage over the EC, especially for particle sizes 

above about 100 nm. However, the values of Fig. 2-11 were obtained with 

the assumption of four size steps per size decade since the standard 

version is usually operated in that manner. Would one use, e.g., size 

intervals of l/20 decade, as in the case of the EC at 2 L min -1 flow, 

the EAA values of Fig. 2-11 would have to be moved up by a factor of 5, 

narrowing the EAA's advantage over the EC considerably. 

While the higher number sensitivity of the EAA is helpful in many 

applications where particle concentrations are not very high, it also 

contributes to the lack in resolution through large size intervals. In 

order to determine the response of the EAA to a monodisperse aerosol, an 

experiment was conducted where the EAA sampled an aerosol of 91 nm latex 

spheres which had been passed through an EC for further narrowing of its 

size distribution (which also reduced and narrowed the small portion of 

doubly charged doublets - see III.D.3). Fig. 2-13 illustrates the input 

into the EAA in the form of a singlet and a doublet peak (triangles) as 

expected from the various.EC experiments, and the actual response from 

the EAA. It clearly shows that the EAA cannot resolve a detailed 

structure such as the two peaks, and it also indicates that considerable 

broadening occurs. The same observation was reported by Vali et al. 
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Figure'2-14. Flow diagram for EAA - EC/EAD comparison of polydisperse 
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kPa refers to input air pressure; M = manometer). 
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(1978) regarding similar experiments during the DRI - Univ. of Wyoming 

Workshop in Laramie. This effect probably stems from a rather broad 

charge distribution generated in the charging section of the EAA. No 

explicit data on how the charges are distributed for each particle size 

could be found in the literature, only average charge vs. size for 

various ion concentrations and residence times. While the EAA's resolu- 

tion might be satisfactory for most applications involving polydisperse 

aerosols in the atmosphere or industrial environments, it is not suffi- 

cient for high precision work as proposed for ACPL. 

Another drawback of the EAA regarding laboratory applications, and 

especially ACPL, is the high sheath air and sample flow rate which is 

twice the value needed for the EC. 

In further comparative experiments during the joint DRI-Univ. of 

Wyoming Workshops, the particle concentration aspect of the instrument 

was examined. Two types of comparisons were made: 

a Polydisperse salt aerosols were size-analyzed by the EAA and a 

EC-EAD, and the measured size distributions compared; the experimental 

set-up which also included a total particle counter (GE CNC-2) is shown 

schematically in Fig. 2-14. The dilutor upstream of the EAA was 

necessary because of the large .difference in sensitivity between the EAA 

and the EC-EAD (see Fig. 210). Although the normalized size distribu- 

tions coincided very well, the experiment had to be termed inconclusive 

due to a large discrepancy in absolute number concentration (EAA much 

lower) which had to be traced, in part, to unsatisfactory performance of 

the dilutor, but which may also have been related to problems of the EC; 

namely, to the uncertainty in the fraction of singly-charged particles 
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Figure 2-15. Flow diagram for EAA - EC/EAD - CNC-2 comparison with 
monodisperse NaCl aerosol (numbers indicate flow rate in 
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or the width bDp of the passing fraction. It should be noted that 

CNC-2 and EAD measurements agreed within 5 to 10% with each other. 

@ The monodisperse output of an EC was measured by the EAD, a 

GE CNC-2 and the EAA according to the flow diagram of Fig. 2-15 (not 

sufficient flow could be generated to simultaneously feed the EAA and 

the CNC-2). 

Particle Diameter (nm) Particle Concentration (cmB3) 

EC CNC-2 EAA 

30 5,300 5,300 7,400 

:"o 24,900 17,700 22,500 14,700 22,000 37,000 

1;: 25,000 28,300 26,000 23,500 49,000 33,000 

This represents a better test for the EAA as it is essentially a 

comparison with the EAD (not the EC), a more basic measurement. As the 

above table indicates, the relatively good agreement of EAD and CNC-2 

(which was checked periodically with a Pollak counter) suggests that the 

EAA did overcount by at least 50% over most of its range. Further 

comparisons are presented by Vali et al. (1978) which essentially led to 

the same conclusion. 

2. Diffusion Batterv 

Characterization of aerosol size distributions is a special prob- 

lem since: (1) typical aerosol size spectra span four to five orders of 

magnitude; (2) the best optical methods cover only the largest two of 

these decades; and (3) aerosol systems are dynam.ic in character, con- 

stantly evolving in response to events such as Brownian diffusion and 

coagulation. Since the 1940's when the first reliable aerosol counters 
. 

, 
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were developed, workers have been aware of the magnitude of this 

problem, as well as some possible solutions. 

One of the earliest approaches to size spectra characterization is 

still one of the most reliable. Early workers in aerosol science were 

acquainted with the results of molecular physics and kinetic theory 

derived in the early part of the century (principally by Einstein); 

these give the inverse relationships between the size of a particle and 

its mobility while 'undergoing Brownian diffusion for particle sizes of 

order one mean free path or smaller. Therefore, by suitable data 

inversion techniques, one can infer particle size distributions by 

looking at the way in which the total aerosol count (measured by an 

Aitken counter) is decreased when the sample is forced to pass through 

some kind of duct or tube. Physically what takes place is that, due to 

the inverse relationship between size and mobility, the smallest parti- 

cles in the distribution diffuse most quickly to the walls of the duct. 

While the mechanisms of adhesion of aerosol particles to surfaces are 

not very well understood, careful experiments have shown that detachment 

almost never occurs. Therefore, it is a relatively straightforward 

manner to incorporate the theory of diffusion mobilities and the bound- 

ary conditions or geometry of the duct into a partial differential 

equation, the solution of which allows prediction of the decrease in 

aerosoJ. caused by diffusion to the boundaries. 

It is now possible to obtain commercial "diffusion batteries" 

which basically provide the duct mentioned above, and aerosol sampling 

ports. When such a device is used together with a detector of the total 

count of the aerosol which has survived the diffusion process, the 
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resulting data can be inverted to give back the original size dis- 

tribution of the aerosol ,particles. The DRI program has utilized the 

TSI 3040 Diffusion Battery, basically the same model intended for use in 

ACPL, together with a standard Pollak (Aitken particle) counter for 

aerosol counting. While use of this method is laborious (since up to 20 

measurements must be taken to characterize one aerosol sample) other 

methods are relatively indirect and unproven. In addition, a diffusion 

battery which utilizes a Pollak counter as detector is probably more 

reliable than commercial differential mobility analyzers (e.g., the TSI 

Electrical Aerosol Analyzer) at small aerosol diameters (around 0.01 pm). 

The diffusion battery, the DRI CFD chamber, and the University of 

Wyoming Electrical Aerosol Analyzer (EAA) were compared in a series of 

experiments-.during the University of Wyoming/DRI Workshop of September, 

1977. Figures 2-16 through 2-20 show the results of five of these 

experiments, using bagged NaCl, H2SO4, and AgI aerosols (a sixth experi- 

ment is discussed in the section on the Photolytic Aerosol Generator). 

At least for the (very soluble) NaCl and H2S04 aerosols, one would 

expect good agreement between the diffusion battery and CFD chamber; 

this is reflected in the results. The EAA, as expected, tends to come 

into agreement with the other two devices as size increases. It is 

noteworthy that this type ,of EAA-diffusion battery discrepancy has 

frequently been observed in sampling of ambient atmospheric aerosols, 

carried out by this laboratory in various field operations. 

In general, the three devices related consistently to one another 

with the CFD chamber giving the lowest or nearly the lowest count at a 
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given size, the diffusion battery reading about the same or slightly 

higher; and the EAA usually reading highest. 

The TSI 3040 Diffusion Battery was found to suffer some disad- 

vantages which probably prevent the user from realizing the full accur- 

acy inherent in the diffusion battery .method. The 3040 is an array of 

randomly-oriented screens, the mesh of which measures about 20 pm per 

side. This geometry is understandably resistant to description by an 

analytical model; the commercial devices were actually calibrated by 

experiment using monodisperse aerosols (Sinclair, et al., 1979). One may 

either use aerosol penetration nomograms, provided with the 3040, or a 

computer program (Sinclair, et al., 1977) for reduction of the data from 

the Model 3040, but in either case the technique is a sequential, 

"graphical stripping" process when one starts with a data point at the 

largest size and proceeds point-by-point to the smallest size. The 

actual penetration data are compared to the manufacturer-supplied .cali- 

bration data at each point; note that a new calibration is required for 

each flow rate to be used. Each derived data point depends upon the 

results of the previous (next largest size) data point, so considerable 

opportunity exists for cumulative error to develop by the time the 

small-size data are finally extracted. 

The reader may refer to Twomey (1975) for a qualitative descrip- 

tion of the resolution and accuracy of a diffusion battery consisting of 

an array of cylindrical holes, a considerably more ideal situation than 

the Model 3040, and one amenable to analytical modeling. Twomey (op. 

cit.) has presented an inversion algorithm which is not subject to the 

cumulative error described above, but which may strictly only be applied 
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to diffusion battery geometries which may be analytically described. 

Very recently, Remiarz, et al. (1980) have modified this algorithm in 

order to apply it to the Model 3040. The result should be a significant 

improvement in this device - e.g., in its ability to resolve two 

monodisperse aerosols closely spaced in peak radius. 

The basic accuracy specification of the Model 3040 is probably 

much worse than if the same device is used with Twomey's inversion 

scheme, or if a more ideal geometry is used with Twomey's method. In a 

brief computational experiment with data from the Model 3040, it was 

estimated that simple cumulative errors in the graphical stripping 

method could be as high as +25% (of the number concentration assigned to - 

the smallest-size end of the inferred distribution). In the data shown 

in Figs. 2-16 through 2-20, every effort was made to keep such error to 

a minimum. 

C. "HARD COPY" SAMPLE ACQUISITION 

There are several reasons for acquiring actual physical samples of 

aerosol particles. Hard copy samples, first of all, serve as back-up in 

case of malfunction of real-time, on-board aerosol characterization 

equipment. However, as pointed out in Section 1I.B (Absolute Size 

Calibration), size verification is of utmost importance in order to 

assure validity of in-flight experimental results, even if pre- and 

post-flight terrestrial calibrations are carried out. Furthermore, it 

may be very advantageous to be able to retrieve additional information 

from particle deposits not otherwise available, e.g., particle shape 

which could be important in various respects; also chemical information 

or indications of particle generator problems could be obtained. 
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1. Methods of Investigation 

The size of particles in question rules out any other method but 

electron microscopy and related investigative tools such as energy 

dispersive X-ray emission analysis. Most basic information needed for 

the ACPL experiments, e.g., size, number and morphology of particles can 

be obtained from straightforward electron micrographs. The two basic 

choices are scanning (SEMI or transmission electron microscopy (TEM). 

The SEM offers the advantages of a pseudo three-dimensional appear- 

ance of the sample with great depth of focus and no particular require- 

ments with regard to sample substrate. On the negative side, there is 

insufficient resolution for most of the CCN particle size range of 

interest to ACPL. Depending on the particular instrument, the reso- 

lution is on the order of 10 nm or somewhat better; thus for particles 

about 50 nm and larger, a SEM analysis may be of value. Fig. 2-21 

illustrates a case of that type where 75 nm NaCl particles (nominal 

diameter from the EC) were deposited on a 200 nm pore nuclepore filter. 

While it seems quite possible to achieve a sizing accuracy (on well- 

focused micrograph) on individual particles of t5% an additional problem - 

is caused by the gold coating applied to prevent charge build-up under 

the electron beam. This coating typically adds 10 to 20 nm to the 

diameters of the particles but, on this program, it was not possible to 

determine how reproducible in thickness this coat can be applied from 

sample to sample - 10% is an estimate based on the limited number of 

samples taken during the course of this project. 

The major advantage of examining CCN by TEM lies in its much 

better resolution - about an order of magnitude higher than the SEM. On 
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Figure 2-21. Scanning electron micrograph. of 75 nm diameter (nominal 
NaCl aerosol sample on 200 nm pore nuclepore filter. 
(Many larger, multiply charged particles are present 
while the majority of 75 nm particles are trapped insid 
pores). 
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the other hand, the TEM method only produces what amounts to shadow- 

graphs, and any information on the third dimension has to be obtained by 

oblique shadowing.. A further difficulty stems from the need for a very 

thin (electron transparent) substrate that is not only mechanical-ly 

'weak, but also is often unable to remove the heat generated by the 

electron beam fast enough to prevent damage to the sample. Preparation 

of samples for TEM also requires more delicate handling and often 

tedious procedures to achieve the most informative shadowing. However, 

the amount of material deposited in the shadowing process generally does 

not add significantly to the size of the deposited particles; otherwise, 

an estimate of the size increase can be obtained through careful 

exanlination of the micrographs. 

Since the study of particle samples by SEM and TEM has become 

mostly a routine operation by specialized laboratories, only a low 

priority was assigned to generating electron micrographs. In those 

instances during the present investigation where particle samples had to 

be examined at high magnification, an IS1 Miniscan III SEM accessible to 

the DRI investigators was used. 

2. Preparation of Samples 

The above discussion on electron microscopy implied that it would 

be most advantageous to prepare aerosol samples such that they could be 

investigated with either instrument, SEM and/or TEM. It was therefore 

necessary to review methods of sample preparation with this objective in 

mind. 

a. Particle Sample Substrates 

Sample preparation consists, in principle, of bringing a repre- 

sentative population of particles in sufficient numbers onto a surface 
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suitable to support the sample during investigative procedures. While 

such a substrate has the primary function to hold the particles in 

place, which mainly requires a material not reactive with the sample, it 

also has to be compatible with the conditions in the SEM or TEM 

(preferably both). Ideally, a substrate would also serve as the sampl- 

ing surface which would greatly facilitate sample preparation and reduce 

the risk of sample alteration by loss or contamination during transfer 

onto the substrate. 

For work with TEM, only thin films of carbon, silicon monoxide or 

similar materials mounted on standard 3 mm specimen screens can be used, 

whereas SEM accept most anything as long as the surface can be made 

conductive. For the limited amount of SEM work performed on this 

project,.. Nuclepore filters were used which have a particularly smooth 

surface, very low background contamination and could also serve as 

aerosol samplers. 

b. Aerosol Precipitation Devices 

Methods suitable to remove aerosol particles in the 10 to 100 nm 

size range from the suspended state onto a collection surface are based 

on Coulomb, th'ermophoretic and inertial forces. Instruments using these 

forces to collect aerosol samples - electrostatic precipitators, thermal 

precipitators, centrifuges and filters - were taken into consideration 

for obtaining ,hard copy aerosol samples on the ACPL. 

In addition to the obvious criterion of providing representative 

samples, the selection of the most suitable sampling device has to be 

based on several other conditions. Due to the multitude of instruments 

sampling from a relatively limited aerosol source, it is important that 
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the sample can be acquired efficiently with little waste. In principle, 

from a statistical viewpoint, a 'sample containing as few as lo4 parti- 

cles could be acceptable. However, in order to study it by SEM or TEM, 

there should be at least a minimum particle concentration on the 

substrate of 1 pm -2. , this would concentrate the total sample to an area 

of only 100 x 100 urn2 which is of the order of one mesh of a TEM speci- 

men grid. This clearly illustrates that a much larger sample is re- 

quired to reduce the risk of loosing the sample through substrate break- 

age or accidental local contamination; also, it would be difficult to 

concentrate a sample on an area that small (except with jet impactors 

which are unsuited for our size range). 

Thus, it appears that the area represented by a TEM specimen grid 

(0.3 cm diameter) is the smallest practically acceptable sample. Com- 

bined with the postulated minimum particle number density on the sub- 

strate, this translates into a sample requirement of lo7 particles. 

Assuming that aerosol of the final dilution* is to be sampled (i.e., 100 

to 1000 cm -3), at least lo4 to lo5 cm3 (10 to 100 a) aerosol would have 

to be ingested by the part 

normal experiment duration 

dilution can be justified. 

* 

llector in a time period not to exceed icle co 

(~1000 set), unless sampling *prior to final 

Since it is anticipated that test aerosols in the ACPL are diluted in 
two stages from the original high concentration off the generator to a 
final particle concentration in the range of 100 to 1000 cm-3 for use 
in cloud chambers, a choice exists as to where (i.e., at what concentra- 
tion) hard copy samples should be withdrawn. Obviously, one should aim , 
for sampling on the final dilution rather than to assume a high 
concentration sample to be representative; nevertheless, the need to 
obtain samples from high concentration aerosol may arise under certain 
conditions. 
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In order to determine whether the above mentioned candidate col- 

lectors are compatible with the sampling requirements just developed, it 

is necessary to briefly examine the collection characteristics of these 

devices. 

(1) Aerosol Centrifuges 

In concept, aerosol centrifuges consist of an annular or helical 

channel through which the aerosol is passed in a slow laminar flow while 

the whole annulus or helix rotates about its axis at several thousand 

rpm; thus, by design, particles settle along the whole channel length at 

positions governed by their size, density and initial position at the 

inlet. This spectrometric feature is particularly advantageous where 

evaluation is not performed by EM study of individual particles and 

where copious amounts of aerosol are available. However, in the present 

application, it would be very difficult to achieve a particle coverage 

suitable for SEM or TEM work considering that tens of square centimeters 

of deposition surface are available. A large number of specimen grids 

would have to be placed at intervals on the deposition surface, but with 

risks of missing an important deposit in between grids. Therefore, it 

was felt that current designs of centrifuges would not be suitable for 

tasks on ACPL. 

(2) Filters 

Two types of filters were considered which had been used by other 

investigators in conjunction with electron microscopy. Nuclepore filters 

(NF) consist of a polycarbonate foil of 10 pm thickness that contains 

randomly distributed cylindrical holes of fairly uniform size (with a 

wide range of hole sizes to choose from: 50 nm to 10 urn). The membrane 

51 



filters (MF) on the other hand, are composed of a fiber-iike cellulosic 

matrix about 150 pm thick; they also are available in a range of nominal 

pore sizes although the pore dimensions are not as well defined as in 

the NF case. Both filter types have similar flow resistance (depending 

on pore size), but the main differences between the two types from the 

user's standpoint are the surface characteristics, the retentivity and 

the mechanical strength. NF have a very smooth surface most suitable as 

a substrate for SEM work whereas the network structure of the MF 

seriously impedes detection and assessment of deposits. A further 

advantage of NF is their superior mechanical strength (tear resistance) 

over MF. With regard to particle retention (a most important parameter) 

however, NF does not perform as well as MF, especially in the particle 

size range of interest to ACPL (see the detailed study by Spurny, et 

al., 1969). 

Before going into further details, the sampling conditions and 

requirements as they apply to the filters have to be examined. In order 

to be able to handle the filter and to transfer the sample onto a TEM 

specimen grid, a filter area somewhat larger than the grid should be 

available - typically on the order of 0.5 cm2. Recalling that we need 

at least 1 particle/pm2, 
,_' 

the necessary sample volume containing 5~10~ 

particles would be 50 to 500 R for aerosol concentrations of 1000 or 

100 cmw3, respectively. If one postulates that sample acquisition 

should not last longer than about 1000 seconds, the required filter face 

-1 velocities would be 100 or 1000 cm s , respectively. 

Consulting the diagrams of Spurny, et al. (19691, one finds that 

these flow requirements can, at best, only be fulfilled marginally by NF 
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for the case of the higher particle concentration. If the pores are 

large enough to allow a high flow rate, the particlesed not diffuse to 

the filter surfaces in the short time available, whereas pores small 

enough for diffusive capture of CCN-size particles would prevent the air 

flow from reaching the needed rate. For instance, the sample exhibited 

in Fig. 2-21 was collected by using a 4 cm s -1 face velocity which, as 

our measurements showed, provided total retention in the NF, though only 

to a small degree on the filter face, but mostly inside the 200 nm pores 

(the good surface coverage was possible only because of a. particle 

concentration of over 105cm -3 in the aerosol). Operation of the filter 

at more than 20 times higher speeds would have caused passage of 

possibly half the particles. 

MF, on the other hand, offer a more efficient way to capture 

particles as they are more than ten times thicker than NF; also, the air 

takes a more tortuous path through MF giving the particles a better 

chance to diffuse to the fiber surfaces even at face velocities that 

would meet our sampling requirements. 

Thus it appears that there are two non-ideal possibilities for 

employing filters for hard copy aerosol samples: 

(1) NF could be used only for sampling undiluted aerosol, and 

even then part of the sample would most likely deposit inside the holes 

such that a direct evaluation by SEM would not yield a representative 

picture. Therefore, the sample would have to be transferred to a dif- 

ferent substrate, preferably a TEM grid, by slowly dissolving the NF on 

top of the new substrate in chloroform vapor according to tried recipes 

(e.g., Frank, et al., 1970; Chatfield, et al., 1978). This procedure 
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removes one major reason for using NF, its capability to act as both 

collector and viewing substrate. A further disadvantage, as.Frank, et 

al. (1970) point out, stems from the fact that particles trapped in the 

filter's holes (which are much longer than wide) in the three-dimension- 

al arrangement will be projected onto the new substrate in two dimen- 

le density at the hole loca- sions, forming spots of very high partic 

tions; this agglomeration may cause difficu 

(2) By using MF of proper porosity, 

lties in the evaluation. 

one could obtain specimens of 

the dilute aerosol; however, caution has to be applied when interpreting 

the transferred sample: motion of the particles during dissolution of 

the 150 pm thick filters may lead to some coagulation depending on the 

number densities involved. Chatfield, et al. (1978) indicate that when 

using identical transfer procedures NF did not cause this problem while 

MF .had to be rejected because the sample was too much "rearranged" after 

the transfer. Although, their case was somewhat different as they 

studied fibers which did not enter the pores of the NF. 

Weighing the two possibilities (partly based on literature, partly 

on our own experiments), it seems at this point that the MF would be the 

better sampling medium although, in the course of this project, only NF 

were used for their convenience in SEM work. A final decision would 

require a series of additional experiments which could not be performed 

in the framework of the present program. 

(3). Thermal Precipitation 

Thermophoresis, the motion of particles in a gas in the direction 

opposite to a temperature gradient depends on particle size and mater- 

ial, carrier gas and temperature gradient. Theory and utilization of 
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this effect have been described in the literature (see, e.g:, Fuchs, 

1964). While there are still numerous discrepancies between theory and 

observation, for the present discussion it is sufficient to indicate 

that the thermophoretic velocity, vT decreases only about 20% with an 

increase 'in particle size from 10 to 100 nm. As a guideline, we select 

as an average value vT = 0.2 cm's -' for a temperature gradient of 

1QOO"C cm-'. Since vT is proportional to the temperature gradient, it 

would seem simple to obtain .a high velocity by merely increasing the 

temperature difference between the cold collection plate and the heated 

area on the opposite side of the sample air stream. However, the 

limitations are (1) for the cold collection plate that its temperature 

be high enough to prevent particles from deliquescing and (2) for the 

hot area that it would not thermally alter the collected particles 

(e.g., decomposition, evaporation). This immediately suggests a further 

constraint, the dependence on the substance the particles consist of. 

Another limitation for the hot area is given by the condition that the 

cold plate should not be warmed by radiation from the heate! parts. 

Increase of the temperature gradient can also be achieved by narrowing 

the gap between hot and cold plate; however, practical considerations 

put the limit in the vicinity of 0.05 cm. 

By selecting a hot plate temperature of a moderate 150°C in order 

not to damage thermally delicate CCN, such as (NH4J2S04, a temperature 

gradient of about 2000°C cm -1 can be established which results in v s T 

0.5 cm s -1 . Since the sample air flow can only be parallel to the cold 

collection plate vT essentially determines the density of the deposit, 

while the sample flow rate mainly governs the area covered by the 
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sample, although its magnitude does have some secondary effects on the 

deposit density. As a result, it is evident that, vT being one to two 

orders of.magnitude less than the face velocity of the above discussed 

filters, the thermal precipitator cannot compete in the sampling of . 

diluted aerosol. Thus it could play a role in the ACPL only where 

particle densities are of the order of 105cmm3 or more. 

One advantage' of the thermal precipitator is its potential to 

produce a deposit of very small dimensions with correspondingly small 

flow rate. For instance, Binek (1965) designed a thermal precipitator 

for exposure of just one TEM grid with a flow rate of only 0.1 cm3 s-'. 

On the other hand, this does raise questions regarding diffusional 

losses in sampling lines. 

. 4. Electrostatic Precipitation 

Basically, all electrostatic precipitators (EP) operate on the 

same principle of charging the particles in order to cause them to move 

in an electric field towards a collection surface. In some designs, the 

same field is used to charge the particles and precipitate them (e.g., 

Morrow an: Mercer, 19641, while other models have separate charg ing and 

precipitating fields. It is essentially the same procedure used in the 

EAA to size discriminate particles, a fact that already point ;s to a 

potential problem of the EP: since the sample air flow has to be more 

or less parallel to the collection surface, i.e., perpendicular to the 

electric field, particles of different size are precipitated at differ- 

ent locations on the collection surface. In order to achieve a uniform 

representative aerosol particle sample distribution on a TEM grid, 

special design efforts had to be applied. An example.of such an 
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advanced sampler was described by Liu, et al. (1967) while the commerc- 

ial version of the device, TSI model 3100, was used in the course of 

this project. The essential novel idea of the designers was to pulse 

the preci,pitating field such that it is off for three seconds and on for 

1.5 seconds; the effect is that the particles (which were being charged 

prior to entering the precipitating field) fill the whole area of the 

field in the off period and precipitate everywhere in the field area 

while the voltage is on. Sample flow velocity (~10 cm s-'1, length of 

precipitating area (17 cm), voltage (4200 V) and gap between electrodes 

(0.8 cm) were matched to achieve best results. The designers determined 

experimentally that the somewhat size dependent collection efficiency 

(e) ranged from about 0.5 for 10 nm (extrapolated) to 0.8 for 3 pm 

particles, the losses occurring mainly in the charger and partly due to 

uncharged particles. 

Again, we need to know the density of the particle deposit (N,) as 

a function of sampling duration (t) and aerosol density (N,). Since 

during the voltage pulse all particles between the electrodes (distance 

h) are precipitated, the density due to one pulse Ns' = N,*h*.e and Ns= 

N,.h.e.f, where f denotes the frequency of voltage pulses (0.22 

s-l). For Na = 1000 cms3 (final dilution) and 1000 seconds of sampling 

NS 
2. 105cm -2 or three orders of magnitude short of the required 1 pm -2 

- a result very similar to what thermal precipitation offers which is 

quite plausible since the deposition velocity in the EP is also only of 

-1 the order of 1 cm s , a value that could not be changed drastically by 

a different design. This clearly means that the electrostatic precipita- 

tor, as its thermal counterpart, could be used on the ACPL only for 
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sampling undiluted aerosol. 

5. Concluding Remarks on Hard Copy Sampling 

In the above review of sampling devices, the question was mainly 

whether a particular technique could furnish a sample in the allotted 

time, and it has become quite clear that the membrane filter method has 

to be given first preference on that account alone - the other devices 

could only be used to sample aerosols prior to final dilution. 

There are, however, other points to be considered, as, e.g., 

handling, risk of contamination, and weight. 

With respect to handling, it is again the filter that ranks high- 

est if in-flight procedures are the decisive factor since it is possible 

to package each filter in a holder that can be connected very easily to 

sampling lines. The other sampling methods all require insertion and 

retrieval of TEM grids into and from the devices for each experiment, an 

operation requiring great care and concentration. Post-flight handling 

of the filters, of course, would also involve TEM grids, but a terres- 

trial laboratory offers many advantages that contribute to reducing the 

risk of failure. 

The probability of contaminating filters enclosed in individual 

holders is negligible during flight and experimentation. TEM grids, on 

the other hand, could suffer from contamination while being handled in 

flight. The one advantage, however, that TEM grids have over filters is 

the possibility to inspect and preshadow them before flight. In 

contrast, filters, especially MF, can only be examined for flaws on the 

surface while the inner structure can only be appraised destructively on 

a spot-check per batch basis. The transfer of sample from filter to TEM 
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grid also provides a chance for contamination, though in the terrestrial 

laboratory it is easier to devise precautionary measures. 

With respect to weight limitations, the filter system would have 

an advantage, though the weight would be proportional to the number of 

anticipated samples. If carefully engineered, thermal and electrostatic. 

precipitators designed according to Binek's (1965) miniaturized versions 

could possibly be kept quite light. 

The discussion on hard copy sampling so far implied that only 

solid aerosols were to be used, and our experiments concentrated on this 

type of aerosols. However, it had always been planned for the ACPL to 

conduct experiments with H2S04 aerosols, the particles of which remain 

liquid even at low humidity. Since the size of these sulfuric acid 

droplets depends on humidity, preservation of samples is considerably 

more difficult, especially if preparation for electron microscopy is 

involved. One should contemplate use of encapsulation schemes such as 

the one applied by Phalen, et al. (19751, on cigarette smoke, and Ho, et 

al. (1979) on NaCl solution droplets. The question is whether an 

encapsulating (or fixing) agent can be found that is compatible with 

H2S04 and meets toxicity standards set for ACPL by NASA. This leads to 

the question of whether the encapsulation could be carried out after 

sampling on filters or TEM grids. Due to the preliminary nature of the 

present investigation, it was not possible to perform any experiments on 

this topic. 
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III. AEROSOL GENERATION 

In order to cover a broad range of conditions in ACPL tests of 

cloud condensation models, CCN of a wide variety of properties were 

deemed necessary. Soluble, insoluble and hydrophobic particles were the 

main categories as defined by their interaction with water substance. 

As representatives of the water soluble CCN, NaCl, (NH4),S04 and H2S04 

were specified while, for the two other types, no particular substances 

had been decided on at the outset of this program. 

Aerosol generation techniques and associated problems are very 

much dependent on and tied to the materials being used to form the 

particles. The following chapters describe evaluative experimentation 

with the various generation methods judged suitable or promising for 

application with the particular types of CCN on the ACPL. The first 

case is the photolytic system for producing H2S04 aerosol via gas-to- 

particle reactions. This scheme represents an interesting alternative 

to aerosolization by pneumatic atomization which is the subject of the 

second chapter. Subsequent chapters are devoted to the formation of, 

and experiments with, hydrosols of water insoluble particles (which, 

again are aerosolized by atomization), and to the application of thermal 

methods for generating certain insoluble and hydrophobic aerosols. The 

fifth chapter deals with techniques for shaping size distributions, 

mainly to achieve a high degree of monodispersity. 

A. PHOTOLYTIC AEROSOL GENERATOR (PAG) 

When this project was initiated, the PAG was a prime contender for 

ACPL particle generation due to the conceptual simplicity of photolytic 
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production of H2S04 and. the potential that sulfuric acid aerosols 

generated in that manner could best simulate anthropogenic aerosol. 

However, as indicated in the introduction, it became necessary, as the 

program progressed, to redistribute the levels of effort in favor of the 

atomizer. Thus, the originally intended extensive study of all perti- 

nent parameters had to be reduced to an investigation of a rather 

exploratory character yielding mainly qualitative results. 

While it never was a goal of this study to contribute to the 

elucidation of the mechanisms leading to the formation of sulfuric acid 

aerosol, existing concepts served as a guide in interpreting some of the 

results obtained in the present investigation. 

Considerable work carried out under other sponsorship* (see Lamb, 

1978 and 1979) contributed to this study, mainly in the form of a gas 

and humidity delivery system (which controls the.input into the PAG) and 

experience gained in related experimentation with longer wavelength UV 

(A>300 nm) . While that gas delivery system will not be described here, 

the PAG input values will be discussed. 

In conformance with this contract,the final PAG model developed in 

this study (Model D) represents the deliverable item. The first section 

below describes how this final version evolved from the original model 

and points to the rationale for the various changes'in design. In order 

to facilitate comparisons, performance data of.all versions are present- 

ed and discussed in Section III.A.2. A brief description of the SO2 

stripper, Section III.C, has been incorporated in this chapter since 

this device is mainly thought of as an accessory to the PAG. 

"Southern California Edison Company. 
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1. Design Considerations 

In order to arrive at an initial "baseline" design, the following 

factors were taken into consideration. Simplicity and an obvious aim 

for compactness and light weight called for restriction to SO2 as the 

only ingredient in addition to readily available air (including water 

vapor). 

Previous experience had indicated that copious aerosol production 
. 

in such a system required the use of short wavelength UV radiation 

(xc300 nm). Thus, the availability o/f small germicidal lamps (G.E. No. 

G8T5, 1.5 cm diameter and 26.6 cm active length) tentatively determined 

the approximate dimensions of the initial PAG model. Off-the-shelf lamp 

and reflector assembly suggested a configuration of four lamps clustered . 

around a cylindrical reaction chamber of about 10 cm in diameter and 30 

cm in length (see Figures 3-l and 3-2). Due to its excellent transmis- 

sivity in the short UV (see Figure 3-31, quartz was used as chamber 

material and conical ends with l/4 inch connector nipples were affixed 

to the 10 cm diameter quartz tube. 

This one-piece, all-quartz design of the PAG chamber was used for 

many of the measurements which will be discussed in the next section. 

The advantage of this version (Model A) was its freedom from leaks and 

from contamination by other materials. However, its main disadvantage 

was the impracticability of altering the geometry. For instance, it was 

suspected that turbulence inside the quartz chamber was the source of 

output instabilities, and thus, based on auxiliary tests, a flow 

straightener was to be installed. Since this was not possible in the 

original one-piece construction, an alternate design had to be sought 
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QUARTZ TUBE 

‘BALLAST BOX 

Figure 3-l. Cross-section of photolytic particle generator (Models A,D). 

63 



Figure 3-2. Photograph of photolytic aerosol generator (Model A). One 
of the four lamps was removed to show the horizontal quartz 
irradiation chamber. 
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Figure 3-3. Spectrum of light output of GE germicidal lamp. 
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Figure 3-4. Absorption spectrum for Teflon FEP film, suggesting con- 
siderable transmissivity between 200 and 300 nm.. [From 
DuPont, Bulletin T-5AJ. 
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which would also allow one to change length or diameter of the chamber. 

This led to experiments with a modular concept whereby the chamber 

end caps (which take on the role of adapters between tubing of s.6 cm 

diameter and the 10 cm diameter chamber) consisted ,of ceramic Btchner 

funnels while the cylindrica.1 portion was made from 1 mil FEP Teflon 

foil stretched between and clamped to the rigid ends. This design 

(Model B) also allowed for convenient installation of a stainless steel 

felt-metal disc acting as flow straightener at the upstream end of the 

chamber. The FEP Teflon foil chamber would, in addition, have provided 

a considerable weight savings in case the need for a larger chamber had 

arisen. 

Prior to deciding on this type of design, the available specifica- 

tions on the Teflon foil's transmittance were consulted (Figure 3-4) 

which indicated that, between 200 and 300 nm, a value of 60-80% could be 

expected. However, actual tests with the 'prototype revealed that 

practically no particles were generated under conditions otherwise iden- 

tical to the ones with Model A. 

Thus it was necessary to resume work with quartz as a chamber wall 

material, though without abandoning the modular concept. In this Model 

C, the ceramic end caps were joined to a quartz cylinder with silicone 

RTV sealant. While this PAG version was again able to produce large 

numbers of particles, initial tests immediately showed that the latter 

were present in the chamber outflow even when the SO2 flow was turned . 

off. Since this behavior suggested that SO2 was being held up in the 

silicone rubber and later released, it was necessary to design a new 

version (Model D) in which the three main parts were connected by 
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reversible mechanical means under avoidance of problematic glue-like 

material. . 

Figure 3-5 depicts a partial cross-section of an end cap and its 

connection with the quartz tube. Basically, the end cap fits over the 

end of the quartz tube, and an O-ring is squeezed against the cap and 

the quartz tube by a compression ring that screws onto the cap. This not 

only provides a gas-tight seal, but also a strong mechanical connec-, 

tion. Due to the fact that the quartz tube is thin-walled, fragile, 

slightly out of round and has a dimpled surface, it is necessary that 

the O-ring be of a relatively soft material and of considerable width to 

properly contact the uneven surfaces without exerting too much pressure 

on the quartz tube. Thus, the original design calling for Teflon as 

O-ring material had to be changed to Viton. This, in turn, required the 

addition of a Teflon ring between the compression ring and the Viton 

O-ring to reduce friction during tightening of the compression ring. 

As Figure 3-5 indicates, the stainless steel end caps are not 

machined from one piece, but rather three pieces to provide a convenient 

method of installing and clamping in place the stainless steel filter 

which serves as a flow straightener; the downstream end cap is identical 

to the inlet one except that the flow straightneer has been deleted. 

Connections to the Teflon or stainless steel l/4" gas lines are made via 

Swagelok fittings which have on one end a male l/4" NPT (the latter 

shown in Figure 3-5) screwed into the end caps. 

The UV lights on this last model PAG are arranged as in Model A 

shown in cross-section in Figure 3-l. A photographic view' of Model D in 

vertical configuration with the inlet at the bottom is provided in 

Figure 3-6. 
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Figure 3-5. Axial cross-section of stainless steel end cap for quartz 
tube (Model D) [all dimensions in inches]. 
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Obviously, this last model does not offer great flexibility with 

regard to its geometry - only the chamber length could easily be changed 

by using different lengths of quartz tube - but, while work on this 

design was in progress, 

flight model would be 

beyond the ones in the 

for constructing larger 

20 cm diameter. 

it became apparent that size limitations for the 

imposed which would not allow dimensions to go 

present model. Thus, no preparations were made 

end caps to accommodate quartz tubes of, e.g., 

2. PAG Performance 

a. Output Variables 

Three output parameters were used to assess performance of the PAG: 

0 The total particle number concentration detected at the exit of 

the generator by an Aitken counter (E-l or TSI-CNC) was monitored during 

all experiments. The goal was to obtain typical particle concentrations 

of the order of 105cm -3 which would allow shaping of the size distribu- 

tion by coagulation or passage through an electrostatic classifier while 

still preserving a concentration sufficient for cloud chamber experimen- 

tation. 

0 Particle size was monitored in some experiments by diffusion 

battery, electrical aerosol analyzer, or indirectly by continuous flow 

diffusion (CFD) chamber. As in the case of the other particle genera- 

tors, the desired size range of the final product was 10 to 100 nm 

radius. 

0 The constancy of the particle concentration was of particular 

concern and was monitored by continuous recording (on stripchart) of the 

Aitken counter output signal. Using the same procedure as in the 
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Figure 3-6. Photograph of photolytic aerosol generator (Model D) in 
vertical position. Cylinder on right side is the SO2 vapor 
stripper. 
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atomizer study, the output fluctuations of the PAG were measured as 200% 

(Max-Min)/(Max+Min) for a given time interval. Where comparisons between 

different operational modes were of interest, it was not necessary to 

calculate standard deviations. 

b. Input Parameters 

Two types of input variables were taken into consideration. The 

first kind pertained to the geometry of the generator chamber which, in 

this case, is described by model designation. Specifically, valid 

measurements were carried out only with either Model A (one-piece 

quartz) or Model D (straight quartz tube with stainless steel ends and 

flow straightener). The other input parameters are a measure of the 

intensities of the various ingredients entered into the chamber, namely, 

SO2 concentration, O2 concentration, humidity, temperature, flow rate of 

gas mixture through chamber, and light intensity. Effects of most of 

these variables on the output were investigated only in one of the two 

chamber models (either A or D), since Model D was not drastically 

different from A, but rather a refinement mainly intended to increase 

output stability. 

(1) Light Intensity, Flow Rate 

An example of how these two variables affect the output of the 

generator is shown in Figure 3-7, an excerpt from a stripchart. The 

light intensity was varied by activating either two or all four lights. 

The tests were carried out with Model A at the flow rates of 15 and 30 

cm3s-' . For both variables, the results as depicted appear at first 

glance to be paradoxical - increased output with less light and faster 

passage through the irradiation zone. However, if one considers the 
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Figure 3-7. Particle output of PAG versus time indicating effect of four 
different operational regimes. Inset showing likely particle 
density versus position in reaction chamber (see text for de- 
tails). 



particle concentration versus time (or position in the chamber) as 

indicated in the figure inset, it appears plausible that slower flow 

provides more time for coagulation, thus fewer but larger particles; 

conversely, lesser light means slower particle build-up and later onset 

of significant coagulation which results in a higher particle number but 

smaller size at the chamber exit. The .latter situation is also 

confirmed by the data on Figure 3-8 which were obtained by analyzing the 

generator output in CFD chambers where sizes are determined via super- 

saturation using the Kiihler relationship. 

While there is little doubt that the data displayed in Figure 3-7 

are at least qualitatively descriptive of the end result of the process- 

es occurring in the PAG, the above mechanistic reasoning has to be 

regarded as just one hypothesis which could not be further pursued in 

the framework of this program. In subsequent research under different 

sponsorship, it became quite clear that systems such as the PAG are much 

more complex and difficult to interpret than originally assumed. 

For further tests, the light and flow conditions selected were: 

all four lamps on and a-flow rate of 2 a min -1 . In this context, it 

is interesting to note in Figure 3-9 the drastic effect of a 1 mil FEP 

Teflon foil (as used on Model B) positioned between the lights and the 

quartz tube: no observable particle generation when foil- is in place 

(left side of figure), but immediate onset of aerosol formation as soon 

as Teflon foil is removed. This clearly demonstrates that lack of 

transmissivity below 300 nm was the reason for Model B to fail, despite 

the misleading data of Figure 3-4. 
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(2.) so*, Water Vapor and O2 Concentration 

Initially, the experimental set-up did not include humidity con- 

trol or measurement. Thus, measurements such as the ones of the SO2 

concentration effect on the particle number as shown in Figure 3-10 are 

difficult to compare with later measurements; however, this figure 

points to two observations: within the range 1 to 10 ppm SO*, the 

resulting particle number appears to be approximately proportional to 

the SO2 concentration and, more importantly, the resulting average 

particle size does not depend strongly on the SO2 concentration as 

determined by diffusion battery methods (note the mean diameters indi- 

cated on the graph). 

After adding a humidifier-and a dewpoint temperature controller to 

the gas-handling equipment, the data of Figures 3-11 and 3-12 were 

obtained. Figure 3-11 shows the particle number output as a function of 

humidity (as expressed by the dewpoint temperature, TD) for three 

different SO2 concentrations. While these measurements were carried out 

with the Model A chamber and O2 as carrier gas, the data set of Figure 

3-12 was generated with the Model D PAG and air as carrier. The plot 

shows that the SO2 concentration was varied over a wide range (0.03 to 

10 ppm) for three different humidity values. 

Both figures indicate the same trend for the effect of SO2 concen- 

tration on particle output: a strong increase in particle concentration 

with increasing SO2 concentration at low SOP values, but becoming weaker 

or zero for higher SO2 concentrations and higher humidities. Similarly, 

increasing humidity caused sharp increases in particle production - more 

pronounced at low humidity and low SO2 concentration. 
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Figure 3-10. PAG (Model A) particle output as a function of SO2 con- 
centration. Indicated particle size values are based on 
diffusion battery measurements. 
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Besides not having completely overlapping ranges in SO2 and hu- 

midity, the two sets of measurements differ mainly in absolute particle 

concentration for identical pairs of [SO,] and TD, whereby the values of 

Figure 3-12 are more than an order of magnitude lower than those of 

Figure 3-11. To a considerable extent, this has to be attributed to the 

difference in carrier gas - higher O2 concentration leading to increased 

aerosol formation. 

C. Effects of Temperature on PAG Output 

While the temperature dependence of the particle output is of 

general interest, it is of particular importance in the present case 

because an ACPL version of the PAG would require an enclosure which 

would need to be cooled to remove the heat generated by the lamps. 

For the present experiment, the PAG was fitted with an insulating 

jacket of glass wool which caused the chamber temperature to increase 

gradually from the normal ~35°C to nearly 50°C under the influence of 

the four UV lamps. The temperature was measured by a thermistor taped 

to the outside surface of the quartz tube. Using air at a dewpoint of 

10°C with 0.03 ppm of S02, the particle output dropped to approximately 

l/8 of the original value for a 15°C increase in temperature. 

While higher temperatures in the reaction chamber may indeed 

reduce the particle formation rate, it is quite likely that, in part, 

the heat-related reduction in light output was responsible for the 

observed effect. The two possible causes were not investigated separ- 

ately. 
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Figure 3-11. Influence of humidity on the PAG output for three differ- 
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d. Size Distribution of the PAG Particles 

It was previously mentioned that the sizes of the particles gene- 

rated in the PAG were of the order of 10 nm. Size distributions as 

obtained indirectly by feeding the output to several CFD chambers 

operating in parallel and set at different supersaturations are depicted 

in Figure 3-8 where supersaturation values were translated into particle 

sizes according to .the K6hler relationship. ,It is evident that the 

majority of particles were smaller than the lower limit of the primary 

range specified for the ACPL. This was reconfirmed while acquiring. the 

data of Figure 3-12 where one CFD chamber provided some values for 1% 

supersaturation; on the average, only about 5% of total particles were 

activated at that supersaturation. 
‘ 

An example of an aged PAG aerosol (generated at the occasion of 

the first DRI-University of Wyoming Workshop) is shown in Figure 3-13. 

A 'storage bag was filled with the PAG output in order to be able to 

measure the size distributions with three different instruments of which 

the combined sample flow rate was far greater than the PAG flow rate. 

It is easy to see (from the differing steepness of the curves) that the 

spectrum of Figure 3-8 is, as expected, much narrower than the ones of 

Figure 3-13. The latter diagram also demonstrates the typical quality 

of agreement between such diverse instruments as the Electrical Aerosol 

Analyzer, the CFD chambers, and the Diffusion Battery. 

e. Output Constancy 

Early in this investigation, it became evident that it would be 

difficult to meet the specifications for constancy of the PAG output. 

Fifteen to twenty percent fluctuations over a 1000 set period were not 
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unusual and a. 50% drift 

observed. A particular 

over one-hour intervals could frequently be 

ly large number .of time-consum ing tests were 

devoted to this problem. All parameters previously discussed were 

scrutinized for their potential influence on output fluctuations. 

Prior to installation of the humidity control system in the gas- 

handling portion of the experimental set-up, it appeared, based on flow 

tests with smoke, that unsteadiness of the flow was caused at the 

transition from the thin inlet line to the 10 cm diameter chamber. This 

prompted the installation of a stainless steel filter as a flow straight- 

ener at the inlet side of the irradiation chamber. Figure 3-14 shows 

the modest improvement that was achieved by this alteration of the flow 

in the chamber: (a) represents a somewhat better than average output 

recording of the Model A, while (b) was obtained with Model D under 

slightly less favorable conditions (less SO2); the fluctuations were 

down to ~8% from ~15% in (a). 

Humidification and strict control of the dewpoint temperature led 

to considerable improvement of the output quality. Output drift over 

longer periods was reduced substantially while short-term fluctuations 

could be counteracted by increasing the humidity. Figure 3-15 demon- 

strates this effect as well as the influence of SO 2 concentration on 

output steadiness. The seven-minute excerpts from stripcharts are 

arranged according to SO2 concentration (from left to right, 0.1, 1.0, 

10 ppm) and dewpoint temperature, TD (from top to bottom 10, 5 and 0°C). 

It is unquestionable that increases in each of the two parameters 

resulted in improved constancy of the output (less than 5% fluctuations) 

with respect to fluctuations with frequencies higher than about 0.2 

-1 min . 
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Figure 3-14. Stripchart samples of PAG output. Comparison of output 
fluctuation: (a) Model A and (b) Model D, showing im- 
provement by about a factor of 2. 

I-- 

85 



0 

0.1 1 10 (SO2 Cont. - ppm) 

Figure 3-15. Seven-minute stripchart segments demonstrating depend- 
ence of PAG output fluctuations on SO? concentration 
(increase from left to right) and humidity (increase 
from bottom to top). 
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While long-term (30-60 min) fluctuations and drifts could be 

reduced considerably by improved control of the pertinent variables, 

especially humidity, it is still to be expected that output changes on 

the order of 10% occasionally occur. Output differences before and 

after periods of shut-down were found to be even larger, but difficult 

to quantify since there is not a sufficient number of comparable 

observations due to the multitude of variables involved. For the same 

reason, it has not yet been possible to determine with certainty what 

causes the lack of reproducibility. 

3. Vapor Stripper 

Although not an integral part of the PAG, a device to remove 

excess SO2 downstream of the PAG would have been an .absolute necessity 

for ACPL operations and, therefore, it is appropriate to briefly discuss 

that device (stripper) in this chapter. 

The essential design goal for the stripper was high retention of 

the SO2 component in the passing gas mixture combined with a small loss 

of aerosol particles. Since the latter condition could not be met in a 

conventional activated charcoal bed (which acts much like a particle 

filter, too), a design was chosen that is very similar to the diffusion 

dryer (TSI Model 3062) used in conjunction with atomizers (see Section 

111.3.a). Thereby, unimpeded passage for particles is provided by a 

tube made from fine wire mesh which is surrounded by the charcoal bed. 

Since the SO2 has to diffuse through the wire mesh to be adsorbed to the 

charcoal, it is plausible that more SO2 penetrates this device than 

would pass through a regular, complete bed of charcoal granules. 
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In approximate analogy to the above-mentioned diffusion dryer, the 

dimensions of the DRI stripper were selected as follows: wire mesh.tube, 

50 cm long and 1 cm diameter, axially located inside a 12 cm diameter 

capped plastic cylinder filled with 6-14 mesh coconut charcoal granules. 

The device appears in Figure 3-6 to the right of the PAG. 

Figure 3-16 depicts the results of preliminary performance tests. 

The upper diagram shows the flow rate dependence of the percentage of 

SO2 that passes through the device. At a flow of 2 k/min -1 used in most 

PAG experiments about 15% SO2 would penetrate the stripper (in its 

present configuration). The lower curve relates the particle loss in 

the stripper to the SO2 concentration which, in turn, influences the 

particle size - thus the dependence of the particle loss on SO2 

concentration (due to smaller diffusivity of larger particles). Since 

the findings in the previous section mandate the use of a high SO2 

concentration (11 ppm), the particle loss would be of the order of 2% - 

a tolerable value. 

Considering that no attempt had been made in the design of this 

first model to optimize the geometry to achieve simultaneously low SO2 

penetration and low particle loss, the present results are quite encour- 

aging. The simplest approach towards reduction of the SO2 penetration 

would be to increase the length of the unit, e.g., by doubling the 

length the penetration could be lowered to less than 2.5% while the 

particle loss would merely double to 4%. 

However, proper optimization of the device would require a more 

extensive study of the various properties of the stripper; also, e.g., 

the minimum required diameter of the charcoal cylinder around the wire 
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mesh tube would have to be determined on the basis of SO2 consumption 

and flight duration. 

In summary, then, it can be stated that the concept of a stripper 

to drastically reduce the SO2 content in the effluent of an aerosol 

generator is feasible. Further development work is required to deter- 

mine the best compromise between SO2 retention and particle loss. 

B. AEROSOL GENERATION BY ATOMIZATION 

1. Selection of Suitable Candidate Atomizers for Evaluation 

Atomization (or nebulization) of liquids - breaking up of the bulk 

substance into a large number of very small droplets - can be achieved 

in several ways, all of which require energy to generate the large 

amount of new surface. Regardless of the method applied, the primary 

aerosol emerging from an atomizer consists of liquid droplets. To obtain 

an aerosol of solid particles, .the solid material either has to be 

dissolved, the solution atomized and the solvent evaporated, or the 

solid material can be hydrosolized first, the hydrosol atomized and the 

liquid evaporated; a third method consists of operating an atomizer 

above the melting point of the solid material and subsequent solidifica- 

tion of the droplets. 

The most frequently used method is pneumatic atomization whereby 

liquid is injected into and broken up by a jet of air (or other gas). 

Another technique, ultrasonic atomization, consists of imparting ultra- 

sonic vibrations to the liquid which may be dispersed if certain con- 

ditions are met. A third method uses hydraulic pressure of the liquid 

alone to cause breakup after passage through an appropriately designed 

nozzle. In addition, there are hybrid systems such as vibrating orifice 

90 



droplet generators in which the vibration forces the liquid to break up 

into segments of equal size, leading to high monodispersity. 

From the beginning of this program, the pneumatic atomizer was 

given preference over the other liquid-dispersing methods for the fol- 

lowing reasons. 

Due to their basic simplicity and versatility, pneumatic atomizers 

have for years ,proven to be extremely useful aerosol generators as 

documented in the literature (e.g., Liu and Lee, 1975, or review by 

Raabe, 1975). Furthermore, the present investigators' previous experi- 

ence has shown that ultrasonic and hydraulic atomizers have serious 

shortcomings. The performance of ultrasonic atomizers (which have the 

advantage of not requiring compressed air) seems to be more sensitive to 

the physical characteristics of the liquid to be dispersed than the 

pneumatic type - e.g., the ability to atomize salt solutions may rapidly 

decrease with increasing, but still moderate, salt concentration. 

Hydraulic atomizers require very high pressures to achieve satisfactory 

dispersal of liquid with high surface tension (such as water). The 

vibrating orifice type drop?et generators produce droplets too large to 

be useful for CCN production of the ACPL specified size range. Late in 

the project period, a hybrid device became available for testing which 

consists of a pneumatic atomizer, but incorporates a nozzle design that 

generates acoustic waves which assist in the dispersion (manufacturer's 

claim). 

2. Evaluation of Pneumatic Atomizers as ACPL Aerosol Generators 

While the above considerations, supported by the findings of 

Anderson (1977) led to the conclusion that penumatic atomizers were the 
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best choice as primary aerosol generators for ACPL, the description by 

Liu and Lee (1975) on the TSI Model 3076 "Constant Output Atomizer" 

(COA) suggested that this particular device would indeed fulfill the 

requirements set forth by NASA except for some necessary low-gravity 

adaptations. Thus, the atomizer evaluation effort was initially focused 

entirely on the COA. 

a. Laboratory Set-up for Atomizer Evaluation 

The evaluation of the COA as well as of other atomizers was to 

elucidate the following points with regard to their suitability or 

applicability to ACPL: output number size. distribution, required air 

pressure for the nozzle, liquid flow characteristics and, most impor- 

tant, output constancy and reproducibility. 

Most measurements were carried out with the set-up shown schemati- 

cally in Figure 3-17. The atomizer, shown on top left, is supplied with 

dried, filtered and pressure-regulated air conveniently prepared with 

the TSI Model 3074 auxiliary air supply depicted in the sketch of Figure 

3-18. The air flow rate through the atomizer is adjusted to the desired 

value by pressure regulation; thereby, the flow-pressure relationship 

depends on the atomizer model - to a lesser extent even on the 

individual device. With regard to liquid supply, some atomizers such as 

the COA can be operated in two different configurations: (1) In the 

recirculating mode (not shown on figure) the liquid is aspirated by the 

venturi effect of the air jet, and the excess liquid (impacted large 

drops) is returned by gravity to the reservoir (in most atomizers an 

integral part, in some such as the COA, a separate container); and (2) 

in the non-recirculating mode, the liquid is pumped - as indicated on 
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Figure 3-17. Schematic of test set-up for evaluation of atomizers. 
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the schematic (Figure 3-17) - at a selectable but steady rate into the 

jet, and the excess is discarded. (A discussion on the two modes will 

ensue in the next subsection.) 

1 Two versions of the fluid delivery system are shown in Figure 

3-19; during the first year of the program, the syringe pump (Harvard 

Apparatus*, Model 975), on the left in the photograph was used to pump 

the liquid directly into the atomizer. Later on, addition of a flow- 

meter (Matheson No. 610) between pump and atomizer indicated oscilla- 

tions in the output; this defect and the limit on the experiment time 

due to the small 50 or 100 ml syringe volume prompted a switch to the 

FMI** metering pump Model RHOCKC visible in Figure 3-19 above the 

reservoir bag. This final set-up permitted uninterrupted test runs of 

many hours. 

As the mist emerges from the atomizer, dry dilution air is added 

to start the process of droplet evaporation which is completed in the 

subsequent passage through the diffusion dryer (TSI Model 3062) con- 

sisting of a wire mesh tube surrounded by a drying agent and a cylindri- 

cal, airtight enclosure. The dry aerosol then undergoes charge neu- 

tralization prior to entering the EC as discussed in Section II.B.(b). 

Since the aerosol flow through the EC should be kept low (e.g., 2 a 

min-'1 to achieve high resolution, and since the combined rate of ato- 

mizer and dilution flows may be considerably higher, the excess sample 

air is dumped just before entering the EC. The effluent of the EC and 

* 
Harvard Apparatus, Millis, MA 

** 
Fluid Metering, Inc., Oyster Bay, NY. 
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Figure 3-19. Photograph of fluid delivery system with syringe pump 
(left), FMI-RHOCKC metering pump (top), and collapsible 
fluid reservoir. 
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EAD were aspirated by a vacuum pump which provided most of the pressure 

'drop through those two instruments. This resulted in low overpressure 

on the downstream side of the atomizer which was advisable when compar- 

ing performance at various jet nozzle pressure drops. 

Initially, all connections shown in Figure 3-17 were made with 

Tygon plastic tubing; however, aerosol carrying lines were later re- 

placed with stainless steel tubing to prevent buildup of electric charg- 

es which may drastically affect the loss rate of aerosol in transit. 

b. Evaluation of the TSI-COA and Comparison with Selected 
other Atomizers 

The TSI-COA shown in a cross-section in Figure 3-20 incorporates 

essential elements of the typical Collison nebulizer* several modern 

versions of which have been described by May (1973). Dimensions and 

mutual positions of air jet nozzle and liquid feed orifice are practi- 

cally unchanged from the original design. The novel features include an 

exchangeable air jet nozzle in the form of a platinum disc (TEM 

aperture), an external fluid reservoir that permits one-time use of the 

liquid and, most importantly, a 1.2 cm diameter vertical cylindrical 

cavity into which the jet is directed, perpendicular to the cylinder 

axis so that the cylinder wall opposite the jet opening .serves as a 

baffle where the large droplets impact and run off. An exterior view of 

the device is seen in Figures 3-18 and 3-21 where the atomizer is 

connected to a spent-liquid reservoir. The significance of these 

features will be discussed as pertinent tests are described below. 

* 
Atomizer and nebulizer. are treated here as synonyms. 
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Figure 3-20. Cross-section of TSI-COA (from TSI Manual). 
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Figure -3-21. Photograph of TSI-COA. 
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One can obviously determine, without tests, that the recirculating 

mode. of the fluid feed would not be acceptable for zero-gravity since 

separation of the recirculating liquid from the aerosolized fraction is 

by gravity, whereas in the.,nonrecirculating mode the spent, but not 

aerosolized, liquid can be ingested and retained by w-icking material. .A 

further disadvantage of the recirculating mode stems from the fact that 

the solution concentration gradually increases with time due to evapora- 

tion. On the other hand, the nonrecirculating mode demands much larger 

fluid reservoirs adding to the weight and volume problem. 

(1) Number Size Distributions 

Most testing of the COA was carried out at an operating pressure 

of about 30 psi as this is generally considered the optimum range 

judging from May's (1973) performance tables. The main effect of 

increased air pressure is increased output number concentration, but not 

a substantial change in size distribution. The latter can best be 

manipulated by varying the salt concentration. Figure 3-22 demonstrates 

the two effects by means of the two size distributions as indicated. 

The solution strength differs by a factor of 40 and, as expected, the 

size ratio i,s indeed in the vicinity of 3.4. As a consequence of the 

pressures being 30 and 35 psi for the 0.025% and 1% solution, respective- 

ly, the number concentration of the distribution on the right is nearly 

twice the one generated with lower pressure. . 

Although Figure 3-22 indicates that selection of the appropriate 

solute concentration will provide CCN populations commensurate with ACPL 

specifications, it is interesting to compare the COA with the perform- 

ance of other nebulizers designed to produce submicrometer droplets 
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Figure 3-22. NaCl particle size distributions obtained with TSI-COA in 
recirculating mode at 30 psi with 0.025% solution (A), 
and at 35 psi with 1% solution ((3). 
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(even though these devices could not be used in the ACPL in their 

present configuration). 

The DeVilbiss Model 644* nebulizer, widely used for inhalation 

therapy, is shown in Figure 3-23 with its hemispherical top (with out- 

let) removed to make the nozzle and impaction surface visible. This 

device was designed for low air pressure (manual compression of rubber 

bulb) and was operated at 3 psi for measuring the size distribution 

displayed in Figure 3-24. The modal size of this distribution is the 

same,as the one of the COA (with the same 1% NaCl solution), but it is 

more polydisperse (a = 2.2) than the COA's (U = 1.9). 
9 9 

One of the latest developments in inhalation nebulizers is the 
** 

"Nano-Mist" , depicted in Figure 3-25. This instrument represents the 

Dautrebande type atomizer where large droplets are eliminated not only 

by impaction on a baffle, but also when the mist is forced to penetrate 

a liquid curtain formed by the excess liquid on its return to the 

reservoir. Another unusual feature of the Nano-Mist is the annular 

liquid feed orifice concentric with the jet nozzle. Three size distribu- 

tions obtained with this device at a pressure of 10 psi are plotted in 

Figure 3-26 for NaCl solutions of 0.034, 2.16 and 33.7 g/l (the low and 

high values being the practical concentration limits for use in atomiz- 

ers). Had the same salt concentrations been used as in the case of the 

COA, Figure 3-22, the two corresponding size distribution curves would 

fall in between the three present curves; thus, it is evident that the 

modal sizes of the Nano-Mist distributions are about one-third of those 

* 
The DeVilbiss Company, Somerset, PA. 

** 
by Eastfield Corp., Noroton, CT. 
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Figure 3-23. Photograph of DeVilbiss No. 644 Nebulizer (top with outlet 
removed). 
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Figure 3-24. NaCl particle size distribution obtained with DeVilbiss 
No. 644 at 3 psi and 1% solution. 
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Figure 3-25. Photograph of Nano-Mist nebulizer. 
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of the TSI-COA. For low concentration solutions, the dispersity of the 

Nano-Mist output is similar to the COA's, but with increasing solute 

concentration a "shoulder" on the large particle side of the distribu- 

tion develops that causes the high concentration curve to be remarkably 

flat (the existence of this feature was confirmed by several repeat 

measurements carried out over a period of two years). 

A device that became available near the completion of this project 

is claimed to disperse the liquid by sonic waves generated in the nozzle 

by the compressed air, as depicted in Figure 3-27. The Sonimist 600-l* 

was briefly tested with the result displayed in Figure 3-28. The size 

distribution is very similar to the one of the TSI-COA for the same salt 

concentration. Considering that the liquid consumption is about twice 

as high as in the COA, no advantage can be found at all in using the 

Sonimist in the ACPL. 

Although NaCl solutions have generally been used for these per- 

formance tests, it had been planned to demonstrate the ability of the 

atomizer to generate sulfuric acid aerosols as an alternative to the 

photolytic method. Figure 3-29 shows the size distribution obtained 

from 1% (by vol.) H2S04 atomized by the TSI-COA at 30 psi in the recir- 

culating mode. As with salt solutions, appropriate further dilution 

would shift this distribution towards smaller .sizes, though in this 

case, the size is not only governed by the degree of dilution but also 

by the relative humidity since H2S04 deliquesces even at very low hu- 

midity in contrast to salt particles where deliquescence occurs at 

fairly high values (i.e., 75% for NaCl). No specific measurement was 

*by Heat Systems Ultrasonics, Inc., Plainview, NY. 
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Figure 3-26. NaCl particle size distributions obtained with Nano-Mist 
nebulizer ,at 10 psi and with solutions of indicated con- 
centrations. 
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Sonic field is produced at orifice as gas reaches velocity’ 
of sound. Sound waves pass over annular cavity causing 
resonant vibrations. Liquid injected through opening is 
atomized by waves emanating f&m cavity. 

Figure 3-27. Schematic of Sonimist 600-l Atomizer (from Sonimist speci- 
fication sheet). 
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Figure 3-28. NaCl particle size distribution from onimist 600-l atomi- 
zer (30 'psi air pressure, 2.2 ml min' 7 flowrate of 0.025% 
solution). 
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Figure 3-29. Sulfuric acid droplet size distribution obtained with the 
TSI-COA (1% diluted H2S04, 30 psi air pressure). 
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taken in the present case as the humidity after the dryer in our test 

set up was always in the vicinity of 10%. 

(2) Atomizer Output vs. Time 

In the course of establishing size distributions from the COA with 

the set up shown in Figure 3-17, it became apparent that the COA's out- 

put was not always constant, but was showing large fluctuations (+lO% or - 

more), sometimes deteriorating gradually, sometimes abruptly. The strip- 

chart excerpts in Figure 3-30 illustrate (on top) an example of an 

unstable output while the recording at the bottom represents the kind of 

stable output expected from the COA and acceptable for ACPL purposes; 

both measurements were taken with the EAD and the same EC settings with 

a 0.01% NaCl solution. As no immediate cause for the atomizer's 

behavior could be detected, the EC-EAD were suspected of producing an 

artifact. This hypothesis was quickly rejected when the atomizer excess 

output (between neutralizer and EC, Figure 3-17) was connected to either 

the total particle counter (GE-CNC-2) or the EAA with the same result. 

The latter case is documented in Figure 3-31 where the upper trace 

represents the EAA reading (Channel 1, total number), and the trace 

below indicates the EAD measured EC output set for 58 nm particles. In 

addition to the perfect correlation, this Figure also shows a qu 

periodic behavior observed at times, though usually much less 

nounced, as in Fig. 3-32. This output recording appeared to be 

typical of higher salt concentrations as opposed to the trace in Fi 

3-30 obtained with a 100 times more dilute solution. 

asi- 

pro- 

more 

gure 

Evidence that more and larger particles are produced during condi- 

tions of output instability is presented in Figure 3-33; these data were 
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Figure 3-30. Example of stable (bottom) and unstable (top) output of 
NaCl aerosol from the TSI-COA at 30 psi and with 0.01% 
solution. 
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Figure 3-31. Unstable TSI-COA aerosol output measured with EAA, Channel 
1 (total particles), upper trace, and with EC-EAD set for 
58 nm particles (lower trace). 
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Figure 3-32. EC-EAD recording of unstable output from TSI-COA operated at 
psi with 1% NaCl solution (top) and stable output from use 
0.01% solution (lower trace). 
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Figure 3-33. NaCl particle size distributions from TSI-COA for stable 
and unstable running mode (30 psi, 0.01% NaCl solution). 

115 



obtained with a dilute (0.01%) NaCl solution which, on the average, was 

less frequently associated with instability problems than higher salt 

concentrations. 

Remedial measures in the form of a buffer vessel were considered; 

however, as the results of such a trial show in Figure 3-34, the fluc- 

tuations could not be suppressed sufficiently with the P-liter container 

used. 

In comparison, the DeVilbiss atomizer never gave a steady output 

as illustrated in Figure 3-35, while the Nano-Mist device displayed a 

consistently stable performance (see Figure 3-36) except for slow drifts 

that could tentatively be linked to temperature changes in the atomizer 

cavity. Tests with the Sonimist 600-l showed it to be unsatisfactory 

with respect to output constancy; the stripchart (Figure 3-37) demon- 

strates the typical behavior involving long-term drifts of the order of 

1% min-' (the high frequency oscillations were caused by the liquid 

pump). 

It was concluded that of the various atomizers we evaluated the 

TSI-COA gave the most constant output as long as it remained in its 

stable mode. The following section pertains to the search for causes of 

the unstable behavior. 

C. Investigation of Output Instability and Design of Im- 
proved Constant Output Atomizer (ICOA) 

(1) Information from Existing Atomizers 

While atomizer output dependency on various input and design 

parameters has been discussed by several authors (e.g. May, 1973; 

Mercer, et al., 1968; Novak and Browner, 19801, output stability with 
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Figure 3-34. Unstable TSI-COA output undampened (A) and dampened by 
passage through 2 liter buffer vessel (B). Same time 
scale as in 3-31. 
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Figure 3-36. Example of generally steady output of Nano-Mist nebulizer. 
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Figure 3-37. Output of Sonimist 600-l atomizer showing frequently occur- 
ring drift (small oscillations caused by fluid pump). 
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time has been the subject of only few investigations (Liu and Lee, 1975; 

Collins, 19751, Results of the latter did not provide any assistance in 

solving the present problem of atomizer output instability. 

After concluding that the cause or causes of the atomizer's output 

fluctuations were occurring inside the atomizer itself an extensive test 

series was started with the aim to determine which parameter or mechan- 

ism was responsible for the detrimental behavior of the COA. 

One relatively delicate component of the device is the air nozzle, 

a platinum disc with a 0.034 cm hole in the center. Removal and 

cleaning of the nozzle occasionally had a beneficial effect, though 

never long lasting. For further scrutiny of the small hole, SEM pic- 

tures were taken after cleaning and also after 12 hours operation. 

Output fluctuations became progressively worse with operation. The 

result, shown in Fig. 3-38, indicated no changes due to erosion or 

deposits. It was found, however, that the nozzle plate had some lateral 

play in its mount which caused differences in output after each removal 

and reinstallation, but could not explain the fluctuations. 

It was noticed that drainage of excess liquid out of the COA body 

often fluctuated in patterns similar to the ones of the output, but it 

was not possible to quantify the result sufficiently to establish a 

clear correlation. 

Furthermore, at high salt concentration, it was observed that foam 

was carried by the output airstream 10 to 20 cm beyond the COA's output 

opening where it would gradually collapse and drain back into the 

atomizer. However, the impossibility of actually observing the action 

inside the COA pointed to the need for continuing the study with trans- 

parent atomizers. 
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Figure 3-38. Scanning electron micrograph of TSI-COA nozzle plate before use 
(left) and after 12 hours of operation with increasingly'un- 
stable output. (Hole diameter = 0.343 mm). 



The previously discussed DeVilbiss and Nano-Mist units which are 

molded from clear plastic were briefly used with the intent of visually 

detecting phenomena in the nozzle area that would provide some clue to 

the irregular behavior. In the DeVilbiss device, the impaction surface 

(small sphere) is mounted very close to the nozzle which has the effect 

that the whole atomizer cavity is filled with a turbulently,moving mist 

impacting and accumulating on all surfaces and thus obstructing a clear 

view of the nozzle area to be scrutinized. However, a few tentative 

observations suggested that accumulated fluid .dripping from the impac- 

tion sphere and fluid feed tube into the jet was at least contributing 

to the output fluctuations. The Nano-Mist nebulizer, by its very 

design, shrouds the nozzle and primary impaction area behind a curtain 

of fluid, and thus was not useful for this aspect of the investigation. 

(2) Variable Geometry Atomizer (VGA) 

It 

process 

the qua 

was des 

nozzle* 

order to improve the conditions for observing the atomization 

and to detect the influence of various nozzle configurations on 

ity of the aerosol output, a variable geometry atomizer (VGA) 

gned and fabricated. This device consisted of a compressed air 

at the end of a metal tube to which liquid feed tubes of 

different sizes and shapes could be attached in different positions. The 

basic type with open jet is shown in Figure 3-39 which illustrates how 

the liquid feed tube can be shifted relative to the air nozzle. Figure 

3-40 depicts the nozzle assembly installed in its cylindrical plexiglass 

housing in which a baffle or impaction plate can be positioned at any 

* 
During most of the investigation sapphire nozzles were used as GE, for 

some time, considered their application in the final flight version of 
the ACPL atomizer. 
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Figure 3-39. Photograph and schematic of Variable Geometry Atomizer. OD 
of compressed air tube is 1.25 cm. Scale in schematic 
refers to positions used in Figure 3-46. 
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Figure 3-40. Photograph of VGA in one of its transparent housings. 
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desired distance from the nozzle. A liquid feed arrangement with,ducted 

air jet as in the TSI-COA or the GE-ACPL model is shown in Figure 3-41; 

as the diagram indicates, the plexiglass part shown in the photograph 

fits on the same air nozzle used in the open jet configuration. Typical 

size distributions obtained with the open and the ducted jet version are 

plotted in Figure 3-42 and 3-43, respectively. 

(3) Study of Output Fluctuations 

It was suspected that unstable behavior of the air jet was a prime 

contributor to the output variations, and thus our first concern was to 

observe, the motion of, the air jet. For this purpose, 'the nozzle 

assembly was mounted such that a wall of the atomizer housing served as 

impaction surface, on which the area of the jet as delineated by the 

impinging spray droplets, could be scrutinized. Thus, it was found that 

the VGA's output varied -monotonically with the apparent solid angle of 

the jet. At times, the jet was not only expanding and contracting, but 

also noticeably changing direction. Initially, the cause of these ' 

effects was thought to be located in the jet nozzle which was examined 

repeatedly without detecting any irregularities. 

Since it was noticed that the position of the liquid feed orifice 

influenced the output of the VGA, this relationship was explored syste- 

matically. Figure 3-44 summarizes the results with respect to the 

output fluctuations; it is interesti'ng to note that the steadiest output 

was obtained at a lateral misalignment of 0.5 mm between air jet and 

liquid feed. Careful observation revealed that one contribution to the 

output fluctuations originated as liquid accumulations (source to be 

discussed later) on the liquid feed tube as shown in Figure 3-45 which, 
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FS:;ure 3-41. Schematic and photograph of ducted jet version of VGA. 
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Figure 3-42. NaCl particle size distribution generated by open jet 
VGA with 0.025% solution and 30 psi. 
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Figure 3-43. NaCl particle 'size distribution generated by ducted 
jet VGA with 0.025% solution and 30 psi. 
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Figure 3-44. Aerosol output fluctuation as a function of liquid 
feed orifice position relative to jet axis. 
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Figure 3,-45. Schematic representation of one cause for output fluc- 
tuations: fluid accumulating on liquid feed tube 
entrained into jet once the drops are large enough. 
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when large enough, were entrained into the jet giving rise to an output 

increase. In an attempt to correct the problem, the outside of the 

liquid feed tube was made wettable by sandblasting its surface. As a 

result, .the liquid would run off in a thin, layer and was much less 

frequently entrained into the jet; thus, the output fluctuations were 

reduced considerably as indicated by the dashed line in Figure 3-44. 

An example of how the output size spectra vary with changing 

vertical position of liquid feed orifice is plotted in Figure 3-46. 

Essentially, the output decreases monotonically for all particle sizes 

with increasing distance of the orifice from the jet axis. This is in 

contrast to the behavior of the TSI-COA (see Section 1II.B.b) which 

showed. higher output values in the fluctuating mode, indicating that 

possibly different mechanisms were responsible for the two sets of 

observations. 

As quantitative experiments did not readily point to the causes of 

output fluctuations, intensified visual and stereomicroscopic obser- 

vation of the VGA in operation provided essential clues that led to an 

understanding of the stability problem. 

Thus it was possible to discern the formation of salt deposits on 

the rim elf the liquid feed tube where the air jet first encounters the 

liquid. As the salt gradually accumulated, the amplitude of the output 

fluctuations continued to increase; conversely, removal of the salt 

deposit from the top of the liquid feed tube immediately restored the 

stability of the output. Apparently, the minute salt deposit alters the 

flow pattern of the jet sufficiently to cause the liquid to be dispersed 

different 1 Y- Since the salt deposits are more likely to form when 
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Figure 3-46. Particle size spectra from VGA output as a function of 
liquid feed tube position (cf. Fig. 3-39). 
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solutions of high concentration are atomized, it is obvious why concen- 

trated salt solutions were leading more frequently to more severe output 

fluctuations. . 

In another experiment, the atomizer performances with two differ- 

ent sizes (1 and 0.5 mm I.D.) of liquid feed tubes were compared. As 

long as no salt deposits formed, the thinner tube produced a much 

steadier output than the wider tube on which the liquid surface was 

oscillating irregularly under the influence of the jet resulting in 

liquid injection into the jet at irregular intervals. 

Further attention was focussed on the previously mentioned case of 

drops on the outside of the liquid feed tube which caused output 

fluctuations due to quasi-periodic entrainment of these drops into the 

jet. It was found that the fluid originated from the liquid orifice 

except in those instances where spray from a too closely positioned 

impaction surface deposited on the liquid feed tube (as on most other 

internal surfaces). 

Based on these findings, 

tions could be eliminated if a 

would prevent formation of sa 

it seemed that atomizer 

nozzle arrangement could 

It deposits on the jet-l iquid interface, 

output fluctua- 

be devised that 

and that would cause all liquid fed to the device to be atomized while 

preventing any settling or impacting spray from accumulating in such a 

manner that it re-enters the jet. 

(4) Design of Improved Constant Output Atomizer-_J-ICOA) 

Initially, in attempting to fulfill the above criteria, a variety 

of simple modifications of the original liquid feed configuration were 

tried, such as the ones depicted in Figure 3-47 which were, however, 
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Figure 3-47. Two examples of liquid feed configurations which were 
tried out. 
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unsuccessful. In considerable deviation from those more conventional 

nozzle geometries, experiments were run with an atomizer consisting of 

the usual VGA air jet nozzle over which a disc of fine wire mesh (~0.1 

mm openings) was placed and a liquid feed orifice positioned to contact 

the wire mesh about 3 mm off the jet axis. In operation, the wire mesh 

held the liquid pumped from the orifice by capillary action while the 

jet penetrating the wire mesh atomized the liquid being sucked into its 

path. In this arrangement where the liquid was flowing radially towards 

the jet in the center, no salt deposits were formed and no liquid left 

the main stream to be entrained later. This design provided an output 

with much fewer fluctuations, but the wire mesh in the path of the jet 

seemed to have a somewhat detrimental effect on reproducibility. Also 

from the standpoint of decontamination and maintenance, the wire mesh 

was impractical. 

The next step in the evolution of the ICOA was the version illus- 

trated schematically in Figure 3-48. The wire mesh was substituted by a 

groove which ducted the fluid (again by capillary action) to the center 

into the jet and, judging from the performance, the positive features of 

the wire mesh model were retained while the disadvantages had been 

eliminated. Output stability proved to be excellent, but the size 

distributions (Figure 3-49) were too broad to be acceptable for ACPL; 

also, the total particle output was rather low. 

For this reason and to achieve better mechanical stability, a much 

improved model schematically shown in Figure 3-50 was fabricated; this 

model represents the final version of the DRI-ICOA built under this con- 

tract. The liquid feed tube was changed to enter the groove from inside 
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Figure 3-49. NaCl size distributions obtained with nozzle shown in 
Fig. 3-48 operated at 30 psi. 
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Figure 3-50. Schematic of final version of ICOA, showing the coni- 
cal exit of the air nozzle and the liquid feed enter. 
ing the groove from "inside". 
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and the air nozzle was fitted with an exit cone. Instead of replaceable 

nozzle plates as used in the TSI-COA, the GE-ACPLA and the VGA, the ICOA 

nozzle assembly is machined in one piece from brass bar stock. The 

former VGA housing was subsequently used as .an enclosure for the ICOA 

whereby, in general, the impaction plate.was positioned 4 cm from the 

nozzle. 

Examples of the device's performance are presented in Figures 3-49 

and 3-51. Size distributions for three different air pressures and 

0.025% NaCl concentration shown in Figure 3-51 are a considerable 

improvement over those of Figure 3-49 with respect to total output and 

width of the distribution. Indications are that this improvement 

resulted from the air nozzle exit cone and the reduced distance between 

liquid feed and air nozzle. 

The major accomplishment is demonstrated in Figure 3-52, showing 

the beginning and end of a 6-hour run which is free of fluctuations 

larger than +2% and having drifted only about 2% over that whole period. - 

Equally satisfactory were stop-and-start sequences of which an example 

is depicted in Figure 3-53. . 

Use of several copies of the ICOA over a period of half a year 

confirmed the initial findings that this design surpassed all other 

atomizers tested at DRI with regard to output stability and reproduc- 

ibility. Nevertheless, since there is still a possibility that a unit 

might fail, it is suggested that the ICOA nozzle assembly be slightly 

modified by incorporating the liquid feed into the same cylinder as the 

air feed (two parallel bores) resulting in a nozzle assembly that.can 

easily be plugged into the atomizer housing and removed for replacement. 
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Figure 3-51. NaCl particle size distributions from ICOA at three 
indicated air pressures. Note the very slight de- 
crease in the mode diameter with increasing pressure 
(.5 ml/min flow of 0.025% solution). 
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Figure 3-52. Strip chart record of ICOA output as measured by EC-EAD for a 
six hour run; shown are first and last 20 minutes, demonstrat- 
ing good constancy over Jong periods. 



Figure 3-53. Strip chart record of ICOA output during stop-restart event,, 
indicating good repeatability. 



Flight hardware would include at least one pretested and precalibrated 

stainless steel unit per scheduled experiment period. 

(5) Evaluation of GE-ACPL Atomizer 

The last task of this program was to laboratory test the actual 

flight model of the GE-ACPL atomizer. In view of the experience with 

all other atomizers, these tests concentrated on the unit's behavior 

with respect to output constancy and reproducibility. 

Figure 3-54 is an exterior view of the GE atomizer; the front 

flange incorporates the feed-throughs for inputs of liquid (bottom) and 

air (top), while the aerosol outlet can be seen on top of the canister. 

The nozzle and impaction surface geometries are very similar to those of 

the TSI-COA, except that the GE unit has no drain for the excess liquid 

but instead utilizes most of the canister volume to retain the liquid by 

capillarity in packed quartz fibers. 

Operation of the unit was carried out according to GE specifica- 

tions which, among other things, included use of high quality water 

(such as J.T. Baker HPLC reagent grade), filtration and degassing of the 

NaCl solution, concentration of which should preferably be O.l%, solu- 

tion flow rate of 0.1 to 0.5 'ml min -1 , and compressed air with relative 

humidity below 30% and .pressure regulated within +l%. Also, quite - 

plausibly, the airflow had to be on a few minutes before and after the 

liquid flow in order to protect the air nozzle from salt contamination. 

The air flows through the EC were recorded as well as the exit 

temperature of the aerosol on the same stripchart as the output measured 

by EAD. The important parameter of solution flow was measured with a 
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Figure 3-54. Photograph of GE-ACPL Atomizer tested at DRI. Front 
flange is for liquid (small) and air (large) inlet. Aero- 
sol outlet on top. 
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rotameter and hand recorded - it never varied more than +0.5%. The - 

experiments were run at an air pressure of 25 psi. 

Figure 3-55 indicates that this atomizer is capable of producing a 

relatively fine aerosol, but for certain experiments, it may be desir- 

able to obtain higher concentrations for larger particles, i.e., use of 

more concentrated solutions should be permissible with this device. 

During the first six runs of about an hour each for testing output 

stability, the performance was within specifications except that the 

output dropped a few percent from run to run. With the seventh run, 

shown in part on Figure 3-56, output fluctuations exceeded the specifica- 

tions slightly, while no variations of the other recorded parameters 

could be noticed. 

After several more hours of operation, output variations resembled 

those of the TSI-COA in its most unstable mode; examples are shown in 

Figure 3-57. Subsequent atomizing of pure water for two hours nearly 

restored the original output constancy for a short period as Figure 3-58 

attests although at low fluid flow rates, the fluctuations still far 

exceeded the specified limits. With continued use, the device again 

deteriorated and had to be run for hours on pure water before it was 

marginally usable. 

Thus, one has to conclude that the GE-ACPL atomizer, due to its 

lack of output constancy, is not suited for its intended use unless 

appropriate design changes are put into effect. 
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Figure 3-55. Particle size distributions obtained from NaCl solutions 
with GE Atomizer at indicated concentrations and 25 psi 
air pressure. 
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Figure 3-56. Output of GE Atomizer showing initial constancy (25 psi, 0.1% 
NaCl solution). 
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Figure 3-57. Deteriorated output constancy of GE Atomizer after several 
hours of operation (same time scale as 3-56). 
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Figure 3-58. Improvement in performance of GE Atomizer through prolong- 
ed flushing with distilled water. Note that fluctuations 
decrease with increasing solution flow. 



C. GENERATION OF WATER INSOLUBLE AEROSOLS 

Since pneumatic. atomization proved to be an excellent method for 

particle generation from aqueous solutions, one could, of course, extend 

the atomization technique to non-aqueous solutions with essentially the 

same success. In terrestrial laboratories, such procedures are, indeed, 

being applied; however, disposal of solvent vapors which are generally 

toxic require facilities that would not have been available in the ACPL 

for reasons of weight and volume and/or complexity. 

Among alternate methods, the atomization of hydrosols appears 

particularly attractive, mainly because of the possibility of using a 

proven dispersal method for which the equipment would have already been 

on hand in the ACPL, while the production of the particles (in hydrosol) 

could be carried out in a suitably equipped terrestrial laboratory. Our 

efforts pertaining to this approach are described in the following 

subsection while the very limited experimentation on thermal aerosol 

generation is discussed in Section 2, Thermal Aerosol Generation, which 

follows. Based on previous experience of the investigators, dry disper- 

sal of powders for obtaining aerosols in the specified primary size 

range was given a very low probability of success, and therefore no 

substantive work was performed. 

1. Atomization of Hydrosols 

a. General, 

The performance of atomizers, when working with hydrosols, was 

generally found to be equal or superior,to the case of salt solutions; 

lesser output fluctuations were attributed to the fact that no salt 

deposits formed from hydrosols. 
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One difficulty in working with atomized hydrosols is the much 

lower number concentration that can be achieved since only a relatively 

small number of droplets may contain a particle in order to avoid abun- 

dance of multiplets. Doublets, for instance, are difficult to eliminate 

later on even with an EC since doubly charged doublets differ very 

little in mobility from the singly charged singlets (see Section D, 

Shaping of the Size Distributions). Depending on the type of experiment 

planned, one has to find the optimum balance between a high concentra- 

tion of singlets and interference from multiplets. 

A further potential problem may be caused by the presence of the 

particles consisting.of the residue of "empty" droplets. Although these 

undesired particles are very small, they are present in large numbers 

and generally are water soluble if not hygroscopic. Thus careful 

consideration has to be given to their possible influence on the planned 

experiment. If their removal is deemed necessary, diffusive capture or 

exclusion in the EC.are effective methods to use. 

. The most serious problem, however, is posed by the residue from 

the liquid which coats the insoluble particle. If left on the parti- 

cles, it is likely to influence the particle behavior as CCN, while 

removal may be a difficult task - mere heating may only drive off the 

deposit temporarily while subsequent cooling may lead to recondensation 

on any particles present. Detailed procedures have to be developed 

separately for each individual case. Methods to clean the particles in 

the hydrosol stage can be very complex and still leave considerable 

.doubt as to their effectiveness as the vast literature on purification 

of polymer latices attests (e.g., Wilkinson, et al., 1980). 
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It is nearly impossible to directly determine whether a residue is 

left on the particles that would mask their intrinsic surface pro- '. 

perties. An indirect procedure (which could not be tried out in the 

framework of this Investigation) is suggested for further study. There- 

by, experiments should not only be carried out with the insoluble parti- 

cles, but also with residue particles of the same size which would be 

obtained by atomizing a specially concentrated batch of the liquid 

component of the hydrosol. Identical behavior of the two particle 

populations would then support the contention that residue, was covering 

the insoluble particl,es. 

Despite the relatively dim outlook on clean-up of aerosols from 

hydrosols, a limited exploratory effort was undertaken by experimenting 

with a few specific substances. 

b. Experiments with Hydrosols 

(1) Commerciall,y Available Particles ---___ 

Early in this study, hydrosols of monodisperse polystyrene latex 

particles of various sizes were frequently aerosolized for calibration 

and test purposes (see, e.g., Figure 2-5). In the context of instrument 

assessment, there was: no reason to be concerned about small amounts of 

solute (surfactants, minerals, etc.). The only problems in atomizing 

these hydrosols stemmed from irreversibility of particle agglomeration, 

which were more severe for smaller sizes. However, due to their complex 

nature, latex spheres were not considered desirable as CCN test mater- 

ials. In contrast, Teflon as an extreme in hydrophobicity, and carbon 

black as a constituent of the atmospheric aerosol were selected as they 

were also commercially available. 
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Two batches of Teflon aqueous dispersion* (No. 3416) were procur- 

ed. Unfortunately, attempts to atomize the dispersions were unsuccess- 

ful as the Teflon accumulated on the baffle, clogging the atomizer in 

just a minute running time. No particles (50-500 n: according to specs) 

could be found downstream of the atomizer. Since this occurred even 

before removing the stabilizing components of the liquid, further at- 

tempts of transforming this product into an aerosol were terminated. 
** 

Similarly, carbon black , of which several monodisperse batches 

of different sizes were obtained, resisted incorporation into an aqueous 

dispersion even when using an ultrasonic agitator and surfactants. 

Atomization of the suspension showed insufficient de-agglomeration. 

Thus, no further efforts were expended on this topic. 

(2) Laboratory Prepared Hydrosol - AgI, Silica 

Another candidate material, AgI, insoluble and hydrophobic in its 

pure form, was not considered here for the hydrosol-atomization tech- 

nique since Vali, et al. (1978) were in the process of studying this and 

other AgI generation methods. For the very reason discussed above, a 

hydrosol derived AgI aerosol is impure and hygroscopic, and thus not of 

interest in the context of insoluble CCN. 

There is a considerable amount of literature pertaining to the 

preparation of hydrosols of inorganic compounds. For instance, silica 

(Stb'ber, et al., 1968), magnetite (Sugimoto and Matijevic', 1980), fer- 

ric oxide (Mati.jevic' and Scheiner, 1978), alumino silicates and gold 

(Newton, et al., 1975), and aluminum hydroxide (Tentorio, et al., 1980); 

* 
E.I. DuPont de nemours, Wilmington, Del. 

** 
Particle Information Services, Inc., Grants Pass, OR. 
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all of these contributions describe formation of monodisperse submicron 

particles. The work on silica was known,to the author and, since silica 

is a constituent of the atmospheric aerosol, it was 'decided to evaluate 

this hydrosol and its applicability to ACPL aerosol generation. 

By carefully following the procedures described by StEber, et al., 

it was possible to prepare hydrosols of silica in a reproducible 

fashion. Briefly, preparation involved dropwise addition of tetraethyl 

silicate to a vigorously stirred aqueous solution of ethanol and ammoni- 

um hydroxide. The make-up of the resulting particle populations depends 

on the concentration ratios used. Figure 3-59 represents the size 

distributions from aerosolized silica hydrosols obtained with three 

different ammonium hydroxide concentrations. It is interesting to note 

the increasing predominance of a. small size peak with increasing NH40H 

concentration. At first, it was thought that the real silica particles 

were only those at the 100 nm peak and that the small particles were 

"empty" droplet residues. To test this, the aerosol was passed through a 

tube oven where the volatile water, alcohol and ammonium hydroxide 

evaporated while the fourth constituent, silicic acid, becomes silica 

upon dehydration. The size distribution before and after the oven were 

not significantly different. Both modes, therefore, have to be attribut- 

ed to silica particles. Since the particle sizes of the two peaks were 

a factor of five apart, it can be established that the larger particles 

are not multiplets of the smaller particles. 

In view of the intended ACPL application, the question of colloid- 

al stability had to be addressed since in-flight preparation of the 

hydrosol would be impossible as there is considerable release of heat 
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Figure 3-59. Size distributions of silica aerosols prepared from silica 
hydrosols. The effect of the ammonium hydroxide concen- 
tration during the hydrosol preparation is shown. 
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Figure 3-60. Two silica aerosol size distributions showing the effect 
of aging of the hydrosol. 
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and vapor during some of the preparatory stages. Figure 3-60 indicates 

that in the two-day period between the two measurements, some coagula- 

tion may have caused a slight shift of the small particle'peak towards 

larger sizes. However, the effect was definitely not large enough to im- 

pair the usefulness of this hydrosol for ACPL type of experiments. 

The influence of the tetraethylsilicate concentration on the size 

distribution is shown in Figure 3-61 which indicates that a better 

separation of the two modes can be achieved if a relatively low concen- 

tration of tetraethyl silicate is used. This assumes that interference 

from larger, doubly charged particles, after passage through one EC (see 

3.41, can largely be avoided as long as multiplet formation can also be 

prevented. 

A SEM view of an amply exposed sample of the silica aerosol is 

presented in Figure 3-62 which confirms that the particles are reason- 

ably spherical. 

Although the question of surface contamination by residues from 

the liquid could not be pursued in depth, there is a reasonable 

probability that a sufficient clean-up in the hydrosol stage can be 

achieved to at least minimize the danger from toxic vapors during at- 

omization in the ACPL; therefore, further study of this hydrosol/aerosol 

is strongly indicated. The above mentioned ferric oxide hydrosol (the 

literature on which came to our attention too late to allow experimenta- 

tion with the substance) should also be investigated carefully as it may 

be even more suitable for the ACPL application. 
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Figure 3-61. Effect of the tetraethylsilicate concentration (in the 
process of hydrosol preparation) on the size distribution 
of silica aerosols generated from silica hydrosols. 
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Figure 3-62. Two different SEM views of a sample of electrostatically 
precipitated silica aerosol (gap in line represents 500 
nm). 



2. Thermal Aerosol Generation 

Aerosol generation by thermal means was only considered for insol- 

uble particles and only briefly explored as a less desirable alternative 

to the hydrosol technique - less desirable because of additional heating 

and gas supply requirements which might have been prohibitive for the 

ACPL while, on the other hand, the atomizer was inten,ded to be a part of 

the ACPL anyway. 

a. MI 

As mentioned previously, Vali,. et al. (1978) investigated and 

compared various methods of AgI aerosol generation. They selected the 

hydrosol atomization as the most satisfactory generation scheme. Since 

their aim was to produce ice nuclei, the NH41 residue remaining on the 

otherwise fairly pure AgI particles was not considered detrimental; 

however, as discussed earlier, a purification method would have to be 

devised before the attractive feature of AgI as a test CCN, namely, its 

water insolubility would become evident. 

Thus, a simple thermal generator was devised, a schematic of which 

appears in Figure 3-63: a tantalum boat stretched between two copper 

electrodes served as the low voltage electrical heat source which was 

mounted inside a Pyrex flask; a stream of nitrogen was directed at the 

hot AgI in a Ta-boat, presumably quenching the vapor to form the 

aerosol. The use of N2 allowed heating up to 650°C without particles 

being generated from the tantalum. This requirement, however, would 

probably make this technique unacceptable for ACPL despite the relative- 

ly good output constancy that was achieved with this setup. The size 

distributions obtained at 500°C and 650°C are plotted in Figure 3-64 
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Figure 3-63. Schematic of thermal silver iodide aerosol generator. 
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Figure 3-64. Size distributions of AgI aerosol, generated with-device of 
Fig. 3-63 at two different temperatures, 500°C ((3) and 
650°C (A). 
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which indicates a considerable dependency on temperature that provided 

the desired control over the particle size. 

b. Paraffin Wax 

Common paraffin wax or the more refined related waxy compounds . 

such as eicosane are water insoluble, hydrophobic, have a relatively low 

melting point and a high enough vapor pressure over the liquid to 

generate particles by condensation. Generally, one would utilize a 

different aerosol (such as NaCl) to nucleate the wax particles from the 

vapor. In the present case, an attempt was made to produce the wax 

aerosol homogeneously without the help of an auxiliary aerosol for two 

reasons: (1) simultaneous operation of two particle generators would 

add to complexity and (2) the presence of even a small number of partic- 

les from the auxiliary aerosol that (for one reason or another) did not 

participate as CN for the paraffin wax, could jeopardize the experiments. 

The very simple apparatus depicted in Figure 3-65 produced paraf- 

fin particles mainly in the 80 to 200 nm range (with a long tail of the 

size distribution reaching into the optical range) at concentrations of 

5 to 8x103cm -3 . Apparently the gas jet emanating from the capillary pro- 

duced a high enough supersaturation to cause homogeneous nucleation from 

the paraffin vapor. No tests with air in place of N2 were carried out, 

nor were attempts made at optimizing the system to obtain outputs that 

could be treated with the EC. The constancy of the output was 

encouraging (+5%) but could probably be improved. - 

ACPL adaptation would most likely have required a considerable 

effort since a liquid is involved that needs to be contained. Also, the 
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Figure 3-65. Schematic of set-up to thermally generate paraffin wax 
aerosol. 
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large particles (>500 nm) would have to be eliminated, mainly to avoid 

clogging of critical passage ways in the flow system.- 

It is planned to use and improve this generator in conjunction 

with the "complex aerosol" study. 

D. SHAPING OF SIZE DISTRIBUTIONS 

In the context of CCN experimentation, the purpose of manipulatina 

the shape of aerosol size distributions is mainly to control the slope 

of the resulting CCN supersaturation spectra in order to be able to 

either simulate naturally occurring types of CCN populations, or to test 

instrumentation or theoretical models. 

Some control over the shape of particle size distributions can, to 

some extent, already be exercized at the source of .the aerosol as has 

become evident so far: the type of atomizer, the solution concen- . 

tration, the temperature in thermal aerosol generators, or the size 

distribution of hydrosol particles are just some of the available 

means. However, there are limitations to these techniques in general 

and, in particular, with respect to intended ACPL applications, only one 

atomizer type was on hand. Thus, a few methods for shaping an already 

existing size distribution are discussed below. 

1. Impaction 

Since the efficiency with which aerosol particles can be removed 

from their suspended state by aerodynamic capture strongly increases 

with increasing particle size, this technique mainly serves to reduce 

the number of large particles in a given population. However, even 

impacting the large particles in our size range of interest is relativ- 

ely inefficient and, therefore, this method is best applied in conjunc- 
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Figure 3-66. Size distributions of NaCl aerosols from VGA; m desig- 
nates the original spectrum, while the other curves demon- 
strate the effect of impactors for precipitating larger 
droplets at the atomizer exit. 
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tion with atomizers where the removal procedure can be applied to solu- 

tion droplets prior to evaporation, i.e., about an order of magnitude 

larger in size. Although most atomizers are already equipped to impact 

the large droplets, further removal of large particles is still possible 

as Figure 3-66 demonstrates. The original size spectrum obtained with a 

DRI-VGA had a modal diameter of 100 nm; by forcing the atomizer output 

through simple jet impactors with round nozzles of 1 mm (S) and 1.5 mm 

(L), the size spectra were made to peak at 65 nm and 88 nm, respective- 

ly, in addition to slightly steeper slopes (it is not clear why the 

smaller impactor caused an increase in small particles). 

Since jet impactors would probably have been unsuitable for ACPL 

due to the considerable pressure their operation requires, a filtration 

method was explored. The effect of passing the atomizer output through 

a series of wire screens (mesh openings ~40 urn) is seen in Figure 3-67 

which indicates that large particles were removed at about the same rate 

as in the jet impactor, while the screens retained approximately half 

the particles smaller than the mode diameter. Reducing the mesh size of 

the screens only slightly accentuated the effect illustrated in Figure 

3-67. 

Although the size distributions were narrowed by only about 20% 

(in terms of geometric standard deviation) with the array of screens in 

these experiments, the system could be further optimized, especially by 

adding a set of screens after the dryer to remove a substantial portion 

of the smallest particles by diffusive capture. In view of the 

simplicity of this technique its application in the ACPL should be 

considered; however, since these devices tend to clog up during use, the 
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Figure 3-67. Effect of wire screens at atomizer exit on the size dis- 
tribution of the VGA aerosol output ((3 original, A 
passed by screens). 
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Figure 3-68. Schematic of laboratory set-up for experimenting 
with the recondensation scheme as narrowing method 
for particle size distributions. 
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Figure 3-69. Two Dioctyl Phthalate aerosol size distributions as an 
example showing the effect of the recondensation techni- 
que. DOP aerosol from atomizer (XI, and after recondensa- 
tion (8). 
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design should provide that spare units in cartridge form can easily be 

flipped into the flow path. 

2. Thermal Modification of Size Distributions 

This relatively well known technique is based on the fact that 

evaporation of a particle generally leaves a residue of contaminants 

which will act as condensation nucleus in subsequent rapid cooling and 

recondensation. Applied to a polydisperse population of particles, this 

means rapid condensation on polydisperse nuclei which yields nearly 

monodisperse condensate particles. 

A laboratory-built oven and cooler combination, schematically 

shown in Figure 3-68 was used.to experiment with this concept. Since 

the maximum oven temperature was insuffi.cient to evaporate NaCl par- 

ticles, tests were performed with dioctyl phthalate (DOP) for which the 

thermal treatment is routinely applied (TSI produces an oven-recondensa- 

tion unit designed for this). Figure 3-69 illustrates the DOP droplet 

size spectrum obtained directly with the Nano-Mist atomizer (bottom 

curve, mode diameter larger than upper EC range limit), and the much 

narrowed distribution evolving from the heat treatment. The geometric 

standard deviation of about 1.5 is an excellent improvement over the 

extremely broad original distribution, but in the case of the much less 

viscous salt solutions, the original distribution may have a u 
9 

in the 

vicinity of 2.10 compared to which the recondensed aerosol would not 

constitute a significant enough improvement to warrant the additional 

complication of an oven and cooler unit with the necessary controls. 
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3. "Monodisperse" Aerosols from the Electrostatic Classifier .--..__I. __l- 

The ability to. produce extremely narrow ,("monodisperse") size 

distributions is most important since this will improve the quality and 

decisiveness of information obtained from experiments involving size 

dependent properties. 

In the previous discussion on the EC (in Section 1I.B.a.) it was 

shown how well this instrument can extract particles of a very narrow 

mobility range. The fact that this translates into a multitude of size 

peaks due to the unavoidable presence of multiply charged particles 

causes a complicat ion in using the EC as a sizing too 1 which can, 

however, be dealt w ith mathematically. In contrast, if the output of an 

EC should serve as a monodisperse aerosol the problem of addititional 

though smaller modes in the size distribution (as shown in Figure 3-70, 

an example where the EC was set for the size of 58 nm) is much more 

difficult to solve. One successful approach, taken by Gerber, et al. 

(19771, was to use an aerosol centrifuge as a filter by operating it 

such that any particle larger than the desired size was precipitated 

thus completely suppressing the modes originating from multiply charged 

particles. While this solution is acceptable for a terrestrial labora- 

tory, it would have added too much complication to the ACPL and is, 

therefore, not recommended. 

Having two EC's at our disposal, we explored the suitability of 

their use in series to improve upon monodispersity. In order to better 

visualize the partitioning the aerosol undergoes, one is referred to 

Figure 3-71. On top, the aerosol treatment is represented in terms of 

EC voltage (which is inversely proportional to the mobility), while the 

173 



Figure 3-70. Trimodal output of one EC as diagnosed with second EC 
t.058 llrn, singly charged; ,085 pm, doubly charged; 0.106 
pm, triply charged). 
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Figure 3-71. Schematic representation of the utility to use two EC's 
for narrowing size distributions and reducing multiply 
charged particle interference. (--- input; - output; 
for details, see text). 
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bottom part shows the same procedure in terms of particle size. On the 

left, the dashed line indicates a typical input into the first EC which 

is set at a fixed voltage Vld which corresponds to particles with size 
1 

dl and one elementary charge. One recalls (cf. Fig. 2-2, Section 

II.B.(c), Multiple Charge Compensation) that Vld 
1 

= V2d , meaning that a 
2 

certain d2 exists for which doubly charged particles have the same 

mobility. Since Figure 2-3 indicates that triply charged particles are 

very infrequent in our size range, we limit the present argument to 

singly and doubly charged particles. The size distribution of the 

output from the first EC (at bottom left) shows the two modes at dl and 

d2' At this point one has to determine the number ratio of the two 

populations nd /n 
2 dl 

= AN2*f2d2/AN1'fldl where ANi represents the total 

number of particles in the output in the EC size range centered on di, 

and f jd the fraction of particles with diameter di carrying j charges 

(plotted in Figure 2-3). Depending on the type of experiment, the shape 

of the input size distribution, and dl the ratio nd /n 
2 dl 

may be 

satisfactorily small. If not, passage through a second EC can provide 

the improvements shown on the right of Figure 3-71. One must remember 

that the two different charge and size populations emerging from the 

first EC are again neutralized prior to entering the second EC; thus, 

there are now four different populations that concern us (the vast 

majority of particles having become uncharged is lost for our purposes). 

Depicted at the bottom right (solid lines) are the singly and double 

charged dl particles and the singly and doubly charged d2 particles 

whereby their number ratios are determined according to the data of 

Figure 2-3. While the singly charged dl and the doubly charged d2 
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particles are again having the mobility associated with Vld (=V2d ) as 
1 2 

indicated at top right, the doubly charged dl' particles have twice the 

mobility, i.e., they are extracted at V2d = Vld /2, and; similarly, the 
1, 

singly charged d2 particles can be found'at Vld 
.l 

= 2 Vld . Thus, there 
2. 1 

are three choices of monodisperse outputs, and the selection has to 

depend on the total number of particles available in each category, and 

on the question whether the new ratio of doubly to singly charged 

particles at Vld is acceptable, or whether one needs total lack of 
1 

contamination as featured by the two other peaks. A partial answer can 

be obtained by considering the general expression for the available 

particle numbers: 2 

2 
AN1'fldl for the main peak, and its contaminant, 

AN2-f2d2 which show that the percentage of contamination with two EC's 

is f2d2'fld, times the value for one EC. The peak at V2d provides 
1 

AN1 .fldl.f2d, particles, whereas the number of singly charged d2 parti- 

cle amounts to AN2f2d2.fld2. Since 1 > fldl >> f2dl, one notices 

immediately that the main peak at Vld contains much higher particle 
1 

concentrations than the two uncontaminated side modes - except when the 

original size spectrum is such that aN1 << aN2 and dl >lOO nm, a 

condition not very probable in the context of ACPL experiments. 

An example showing how two EC's reduce the percentage of contami- 

nating doubly charged particles can be found in Figure 3-72 in which the 

assumptions for the original size spectrum were log-normality with mode 

at 80 nm and 0 = 2. 
9 

Evidently it is mainly for small particles below 

about 70 nm where the 2 EC method using the main peak is of great 

advantage, whereas above 100 nm the doubly charged dl particles become 

numerous enough to be useful (20% at 100 nm; 40% at 200 nm). 
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Figure 3-72. Percentage of doubly charged particle interference with 
one EC and two EC's for the example of a log-normal distri- 
bution centered at 80 nm with ag = 2. 
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The 2 EC method not only provides less contaminated monodisperse 

aerosols, but also a more monodisperse one than with single EC. This 

fact is also illustrated in Figure 3-71 where the input into the second 

EC is represented by the dashed triangular peaks which are reduced to 

the narrower peaks (solid lines) delineated by segments of parabolas. 

Based on the above considerations, it appears that a second EC 

would have been very valuable for the ACPL program where experiments 

with particularly well defined monodisperse aerosols were called for. 

179 

L 



IV. CONCLUSIONS AND RECOMMENDATIONS 

A. AEROSOL CHARACTERIZATION . 

' The task of characterizing an aerosol in low-g consists of estab- 

lishing the size distribution and should be provided in two forms. The 

first involves obtaining real time information on the aerosol for. the 

experimenter and for electronic processing/storage which would then 

allow computerized post-flight evaluation. The second form consists of 

acquiring representative collections of actual aerosol particles ("hard 

copy") for post-flight examination, mainly by electron microscopy which 

offers the best possible size calibration as well as morphological 

insight. 

Application of an electrical mobility method is currently the only 

proven way for real time measurement of size distributions in the 10 to 

100 nm size range. The two possible modes that were examined in the 

form of commercial instruments were the TSI Electrical Aerosol Analyzer 

(EAA) using unipolar charging and the TSI Electrostatic Classifier (EC) 

working with aerosol in bipolar charge equilibrium. Despite its higher 

particle number sensitivity, the EAA should not be used for a precision 

size distribution analysis because of its insufficient resolution. 

However, the EAA would be beneficial by providing a time history of the 

operation of the aerosol generators. 

An accurate aerosol size distribution measurement can be obtained 

with the EC due to its excellent size resolution. A problem lies in the 

choice of the particle detector. The Electric Aerosol Detector (EAD) 

that is generally used requires rather high number concentrations, and a 
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switch to a different particle counter is recommended. The new TSI-CNC 

would be nearly ideal if adapted to zero-g, and if the vapors of its 

working fluid (butyl alcohol) can be contained in a manner compatible 

with low-g operation; also, the device's detection limit of 20 nm has to 

be kept in mind. One has to be aware that, even with improved particle 

counting capabilities, the EC would have to sample at a point in the 

system before final dilution of the aerosol. 

If a monodisperse aerosol is generated by means of one or two 

EC's, it is, of course, not necessary to re-analyze it with an addition- . 

al EC - only a particle count is needed. 

Acquisition of a hard copy sample, regardless of method used, is 

accompanied by the difficulty of obtaining a sufficiently high particle 

density on the substrate in the allotted time, especially since the 

sample should be taken at the stage of final dilution near the point of 

entry into the experiment area. This latter condition is very important 

because this sample should be most representative, and thus not contain. 

elements which may be lost further downstream (during dilution and 

transport). 

After reviewing the various sampling procedures, it is concluded 

that collection on membrane filters would provide the highest yield and 

most contamination safe in-flight handling; but this would also require 

that the best procedure of post-flight sample transfer onto electron 

microscope specimen grids be further studied experimentally. It is also 

recommended that a back-up sample be taken at a point where particle 

concentration is high such that direct deposition on grids by electro- 

static precipitation can be accomplished. A special miniature sampler 
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would have to be designed according to guidelines found in the litera- 

ture. 

The collection and preservation of liquid aerosol samples (such as 

H2S04) is considerably more difficult and was not explored as a part of 

this study. It is suggested that encapsulation schemes described in the 

literature be the subject of a further experimental study; even if 

general feasibility can be demonstrated, the necessary volatile chemi- 

cals may be excluded from an ACPL type of environment and other methods 
s 

would have to be isolated. 

B. AEROSOL GENERATION 

The problem most common to all particle generation techniques 

investigated on this project was temporal instability of the output. 

Only in the case of the pneumatic atomizer was it possible to achieve a 

satisfactory solution. 

The photolytic aerosol generator, despite its apparent simplicity 

could not be made to behave predictably enough for an ACPL type of task. 

In the meantime, through work performed under other sponsorship, it has 

become clear that the photochemical processes are too complicated to be 

fully described at this time. More basic research rather than engineer- 

ing is recommended to further elucidate the phenomena involved in the 

particle formation mechanism - a necessary first step towards the goal 

of closely controlling the output of the aerosol generator. 

Close examination of pneumatic atomizer performance showed that 

the only fault of this type of aerosol production was a tendency to flip 

unpredictably from a stable to an unstable output mode. Close scrutiny 

of the atomizing process during operation of specially designed variable 
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geometry atomizers allowed us to identify the following causes for the 
. 

unstable behavior: 

(1) Fluid accumulation of various amounts are periodically en- 

trained into the air jet causing sudden increase in output. These 

accumulations partly originate from relatively large droplets being 

whirled around between nozzle and baffle, eventually impacting somewhere 

- a situation that is aggravated when higher salt concentrations cause 

foam formation. Depending on the liquid feed tube configuration, some 

fluid may also migrate directly from the orifice to some other location 

before being entrained by the jet. 

(2) Salt deposits may gradually form on the rim of the liquid 

orifice altering the air jet flow pattern sufficiently to cause differ- 

ent atomization characteristics. The probability of growing salt de- 

posits increases with solution strength. 

Based on these findings, an improved constant output atomizer 

(ICOA) was designed which avoids the above cited problems. Extensive 

tests and routine use proved the validity of the design. For a flight 

version a minor modification is recommended whereby both air and liquid 

are fed through parallel bores within‘ the same nozzle cylinder. This 

would enable the experimenter to quickly exchange atomizer heads and 

thus, by having spares along, it would be possible to start .each 

experiment with a clean, though pretested, atomizer head. 

Most aerosol generation techniques produce rather broad size dis- 

tributions (a 
9 

> 2) with the possible exception of atomized hydrosols. 

In order to obtain narrower distributions as required for many low-g 

experiments, three shaping methods were evaluated: 
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(1) Simple round jet impactors were able to reduce the large tail 

end of the distribution (>200 nm) by an order of magnitude. This could 
. 

make many otherwise unacceptable polydisperse aerosols suitable for 

low-g experiments. 

(2) One or two EC's are able to narrow down size distributions 

better than other candidate methods. While one EC provides essentially 

a bi- or tri-modal distribution with sharp individual peaks (U 
9 

% 1.05 

for each), a second EC can reduce or totally suppress the secondary 

peaks and further narrow the primary one. Unfortunately, this is 

accomplished at the expense of particle number concentration. 

(3) The recondensation method was briefly examined with the aid 

of DOP aerosols and found to be of moderate effectiveness. 

It is recommended that methods (1) and (2) be utilized in low-g 

while (3) should only be considered if ovens and coolers are part of the 

flight facility. 

Since pneumatic atomizers can easily be used to generate aerosols 

of water insoluble particles by dispersing hydrosols or colloidal sus- 

pensions, efforts were undertaken to produce, as an example, silica 

hydrosols following published procedures. The result was successful 

with regard to the physical characteristics of the ensuing aerosol; 

however, to what extent the non-aqueous components of the liquid can be 

driven off, is a question that is very difficult to answer. In many 

cases as in the present example, passage through a tube oven evaporates 

the liquids, but disposal of the vapors remains a problem in a flight 

situation where heating energy and weight and volume for activated 

charcoal are at a premium - not to mention the toxicology of the vapors. 
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Furthermore, it is extremely difficult to ascertain that no residue 

contaminates the particle surfaces. 

It is suggested that future efforts in this area include the 

search for procedures to clean the hydrosol 'prior to flight such that 

. only modest in-flight vapor treatment is necessary. Also, methods for 

testing the purity of particle surfaces should be established. 

Brief experimentation with thermal generation of aerosols of the 

hydrophobic substances AgI and paraffin wax proved moderately succcess- 

ful, but even prior to designing low gravity adaptations these systems 

require further study to optimize their performance in the terrestrial 

configuration. 
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